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Preface

When the first of the Logica symposium series took place in 1987 in Liblice
in Czechoslovakia, at that time still under communist rule, very few people
would dare to predict its future. The study of logic had been neglected for more
than 40 years and the discipline itself was in ruins. And yet, Logica not only
survived but flourished. It quickly developed from a regional to an international
conference with a stable place in the international academic calendar, and has
recently celebrated its 20" anniversary. In these twenty years it has also hosted
many talks by outstanding logicians, philosophers, mathematicians, linguists
and other scholars with an interest in logic. Among them are David Lewis,
Jaako Hintikka, Robert Brandom, Barbara Partee, and Nuel Belnap, to mention
only few.

The success of the first Logica event also started the long tradition of pub-
lishing the related proceedings, which were replaced by Logica Yearbook series
in 1997, another volume of which we are pleased to present in this book. It
contains a selection of papers presented at Logica 2006, the 20t in the series,
which was held for the third time in the magnificent surroundings of the former
Franciscan monastery in Hejnice in north-eastern Bohemia. We are very glad
that a significant majority of participants of the conference have decided to
contribute to this volume.

The original idea of the founding father of Logica, the Head of the Depart-
ment of Logic of the Institute of Philosophy and Sociology of the Czechoslovak
Academy of Sciences, Ivo Zapletal, was to create a platform where logicians,
both those of mathematical bent and those interested in philosophical logic
and philosophy could meet, present and discuss their results. Over all these
years Logica has strived to retain its multidisciplinary flavour. Therefore in this
volume you may find papers from the field of philosophical and mathematical
logic as well as other areas of analytic philosophy. As a result, and in line with
previous editorial policy, we have arranged the papers alphabetically by author,
forgoing any attempt to group them by theme or topic.

Naturally Logica 2006 as well as this volume were the result of a joint effort
of many people, who deserve our deep thanks. In the first place we would like
to thank the main organisers Vladimir Svoboda and Timothy Childers from
the Department of Logic, the Institute of Philosophy of the Academy of Sci-
ences of the Czech Republic. The conference would almost certainly not take
place without their commitment and dedication. On behalf of the organisers
we would also like to thank the Director of the Institute of Philosophy for his
support. We would also like to thank the Grant Agency of the Czech Republic
whose support of the project no. 401/04/0117 significantly facilitated prepara-
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tions of the conference as well as publication of the present Yearbook. We are
further indebted to Marie Vuckova, Head of the Foreign Relations Department
of the Institute for organisational support before and during the symposium and
to Martin Pokorny for the layout of this volume. We are grateful for the help of
David Géttlich and Petra IvaniCova on organisational matters during and before
the conference, especially David’s creation and production of the conference
documentary movie (see the conference webpage http://www.flu.cas.cz for the
result soon). Above all we would like to thank the staff of Hejnice Monastery,
especially Father Milo§ Raban, for their great hospitality. Special thanks also
go to the Bernard Family Brewery of Humpolec, our traditional sponsor of the
much appreciated Bernard Open Beer Party, an indispensable part of the con-
ference programme.

Last but not least we would like to thank all conference participants who
took the extra effort to prepare their papers for publication and thus made this
volume possible. We would also like to thank them for their outstanding coop-
eration during the editorial process.

Prague, May 2007 Ondrej Tomala and Radek Honzik



Counterpart Semantics
for Quantified Modal Logic

Francesco Belardinelli

1. Introduction

In this paper we deal with the semantics for quantified modal logic, QML in
short, and their philosophical relevance. In the first part we introduce Kripke
semantics for the first-order modal language £~ with identity, then we consider
some unsatisfactory features of this account from an actualist point of view. In
addition, we show that the calculus QF .K + BF on free logic, with the Barcan
formula, is incomplete for this interpretation. In the second part of the paper we
present counterpart semantics, as defined in (Brauner & Ghilardi, 2007; Corsi,
2001). We show that it faithfully formalizes Actualism, encompasses Kripke
semantics, and analyses the modal properties of individuals in a more refined
way.

Quantified modal logic has always had a strong philosophical appeal, since
it first appeared in papers by Barcan Marcus (Barcan, 1946a; 1946b; 1947),
Hintikka (Hintikka, 1961; 1969), Prior (Prior, 1956; 1957; 1968) and Kripke
(Kripke, 1959; 1963a; 1963b). Besides the topics of propositional modal logic
- necessity and possibility, individual knowledge, obligations and permissions,
programs and computations - quantified modal logic especially focuses on indi-
viduals: we can talk about actual and possible objects, the existence and the modal
properties of individuals, as well as counterfactual situations. In the philosophy
of QML we find dramatically relevant issues such as Actualism/Possibilism, real-
ism about possible worlds, trans-world identity of individuals'. It is clear that the
formal development of quantified modal logic will provide an useful tool to
precisely define the concepts above.

2. Kripke semantics

Kripke semantics is widely used to assign a meaning to modal languages; it
stems from Leibniz’s intuition of defining necessity as truth in every possible
world.

! See (Chihara, 1998; Loux, 1979; Menzel 2005) for surveys of these subjects.
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We start with introducing the first-order modal language £~, which contains
an infinite set of individual variables x,x,,...; an infinite set of n-ary predicative
constants P{, Py ..., for every n e N; the propositional connectives —, —; the
universal quantifier V; the modal operator [J, and the identity symbol =. The
first-order modal formulas ¢,¢",... in L~ are defined as follows:

¢ = POpey) [ y=y' 1 =¢ [ d—>¢ [ L | Vyd

The logical constants L, A, v, <>, 3 and ¢ are defined in the standard way.
By ¢[y|,...v,] we mean that the free variables in ¢ are among y,,...,y,; while
¢[v/y'] denotes the formula obtained by substituting some, possibly all, free oc-
currences of y in ¢ with y’, renaming bounded variables if necessary.

Note that no symbol for constants or functors appears in L, therefore the
only terms in our language are individual variables.

In order to assign a meaning to the formulas in £~ we extend the Kripke
structures for propositional modal logic to the first-order.

Definition 2.1 (Kripke Frame) A Kripke frame ‘F - Kframe in short - is
a 4-tuple {(W,R.D,d) s.t.
* Wis a non-empty set;
* Ris a relation on W;
e forww' € W, D(w) is a non-empty set s.t. wRw" implies D(w) < D(w");
e forw e W, d(w) is a possibly empty subset of D(w).

Intuitively, W is the set of possible worlds and R is the accessibility relation be-
tween worlds. Each outer domain D(w) contains the individuals which it makes
sense to talk about in w, while each inner domain d(w) is the set of inviduals
actually existing in w.

We say that a K-frame F has constant (resp. increasing, decreasing) inner
domains iff wRw' implies d(w) = d(w") (resp. d(w) c d(w"), d(w) D d(w")).

Definition 2.2 (Kripke Model) 4 Kripke model M - K-model in short - is
a couple F ,I) where ‘F is a K-frame and the interpretation I is a function s.1.
e for every n-ary predicative constant P* and w € W, I(P",w) is an n-ary rela-
tion on D(w);
e I(=w) is the equality relation on D(w).

Finally, we define the truth conditions for a formula ¢ € £~ at a world w
w.r.t. a w-assignment o from the variables to the elements in D(w):

(M) & P"(yypey,)  Iff {0())no(v,)) € I(P"w)
Mow) =y=y" iff o()=00")
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(M°w)E—p  if (M w)HEw

(M°w)yEp—>y iff (M°w)#Eywor (M'w) Eyp'
(M°w) Oy iff  forevery w' € W, wRw' ignplies (MW" =y
(M°w) = Vyp iff forevery a € dw), (M@ ) & ¢

where 0(7) is the w-assignment that differs from ¢ at most on y and assigns
element a to y. Note that the clause for [-formulas is well-defined, as by the
increasing outer domain condition ¢is a w*assignment whenever it is a w-assign-
ment.

The truth conditions for the formulas containing the logical constants A, v,
<>, 3 and ¢ are defined from those above. Furthermore, a formula ¢ € L~ is

true at a world w iff it is satisfied at w by every w-assignment o;
valid on a model ‘M iff it is true at every world in 2M;
valid on a frame F iff it is valid on every model based on F;

valid on a class C of frames iff it is valid on every frame in C.

While a w-assignment ¢ has outer domain D(w) as codomain, the quantifiers
range over the inner domain d(w). This means that the classic theory of
quantification is not valid on the class of all Kripke frames.

In the next paragraph we highlight the unsatisfactory features of Kripke
semantics from an actualist point of view.

3. Actualism

Kripke semantics assumes the increasing outer domain condition: for all
w, w' € W, if wRw' then D(w) < D(w"). This constraint is required for evaluating
[-formulas - otherwise a variable y s.t. ¢(y) € D(w) might have no denotation
in D(w") - but is it philosophically motivated? In this section we negatively
answer this question, on the grounds of problems related to the existence and
trans-identity of individuals. Thus, we lay the foundations of a counterpart-theo-
retic approach to quantified modal logic.

3.1 Increasing outer domains

In section 2 we presented Kripke semantics for the first-order modal language £~
We remind the evaluation clause for [ -formulas:

(M°w) =g iff for every w',wRw' implies (M’ w’) = ¢
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The same assignment ¢ to the variables in £~ appears in evaluating both [l¢
and ¢. This means that [g is true at a world w for the individuals a;,....a, in
the outer domain of w, iff in all the worlds accessible from w, the formula ¢ is
true for the same Apyensy,- This definition lays down a problem of trans-world
existence: in order to evaluate [J-formulas in a K-model, we have to assume that
the individuals ai,...a, in a world w exist in all the worlds accessible from w.
Kripke semantics requires the increasing outer domain condition, which was
assumed in def. 2.1.

Nonetheless, there is a number of contexts in which this constraint is not
intuitive at all, just consider temporal logics: things now existing probably will
not exist in some future time2. Even in epistemic and modal logic, we may be
willing to think of epistemic states and possible worlds containing fewer indi-
viduals than the present one. After all, the actualists deny the existence of all the
possible individuals but the actual ones:

Actualism is the philosophical position that everything there is - every-
thing that can be said to exists in any sense - is actual. Put another way,
actualism denies that there is any kind of being beyond actuality; to be
is to be actual.’

If we accept the actualist account of existence, then we are eventually forced
to dropping the increasing outer domain condition.

3.2 Varying domain K-models

In Kripke semantics we have a way to reconcile increasing outer domains and
Actualism. It consists in distinguishing for each possible world w an outer do-
main D(w) of objects, to which it makes sense to ascribe properties and rela-
tionships, from an inner domain d(w) of existing individuals, over which the
quantifiers range. In this way we obtain the varying domain K-models in section 2,
which first appeared in (Kripke, 1963b) as a formal representation of Actualism
in the author’s intent. This approach has some point, as the varying domain
K-models formalize the idea of diverse individuals existing in different instants.
Moreover, possibilist principles such as the Barcan formula Vx[¢p — [1Vx¢, its
converse [1Vx¢ — Vx[¢ and the necessity of existence Vx[E(x) - which are
all rejected by actualists - are no longer valid. In conclusion, can actualists be
content with the varying domain settings in Kripke semantics?

2 As a roman epigraph states: Fui non sum, es non estis, nemo immortalis. This ontological account
is known as presentism, for a survey of the eternalism/presentism issue see (Loux, 1998; Lowe,
1998).

3 (Menzel 2005), p. 1. See also (Linsky & Zalta, 1994), p. 436.
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In (Menzel 2005) Menzel lists two actualist issues, which are not completely
satisfied by this solution:

1.

In the object-language the quantifiers range only over the individuals in
the inner domain, as it is expressed by the evaluation clause for V-formu-
las:

(M°w) E Vyp iff foreverya e d(w),(ﬂ\/l”(’g),w) E ¢

but in the meta-language of K-frames we deal with two distinct sets, i.e.
D(w) and d(w), for each w € W. Thus, the possibilia swept out by the
door, come back through the window. Furthermore, since the classic
theory of quantification is no longer valid, we are eventually forced to
introduce the existence predicate £ and free logic to recover a sound
first-order calculus. This is a quite ironic consequence for a philosophi-
cal account which does not want to discriminate between actual and
possible existence.

In varying domain K-models it can be the case that some individual a
belongs to D(w) but not to d(w), for some w € W, nonetheless proper-
ties and relationships are usually ascribed to @ even in w. From a certain
perspective this is quite intuitive: think about Plato who is considered,
at the present time, a great philosopher even if he died in 347 BC. But
this characteristic of Kripke semantics conflicts with the fundamental
thesis of Strong Actualism*: if an object a does not exist in a world w,
then nothing can be said about @ in w. If we accept Strong Actualism,
then we must admit truth-value gaps in Kripke semantics, even for modal
formulas evaluated on existing objects ay,....a,, Whenever any a; does not
appear in some accessible world.

We conclude that Kripke models with varying inner domains are not a satis-
factory proposal for reconciling increasing outer domains and the actualist ac-
count, in particular w.r.t. Strong Actualism. These last remarks seem to deny the
very possibility of a formal representation for Actualism in Kripke semantics.

3.3 Trans-world identity

There is a further question, concerning the increasing outer domain condition,
which deserves more insight. The definition of satisfaction for [(-formulas is an
a priori construction, the well-definiteness of which is guaranteed by the recur-

4 See (Prior, 1968) for a brief presentation of Strong Actualism.
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sive process. When a posteriori we want to check whether a modal statement (¢
is true for an individual a, we need a method to recognize the same a across pos-
sible worlds. This tantamounts to the well-known problem of trans-world iden-
tity, the bibliography of which has been enlarging during the last half-century”.
This issue is not our concern for the moment, we consider only the (negative)
solution to the problem given by Lewis in (Lewis, 1979). But before, we list two
other unsatisfactory aspects of Kripke semantics.

The necessity of identity x = y — [(x = y) and the necessity of difference
x=y — L(x # y) hold in every K-model, as consequences of the unrestricted
validity of Leibniz’s Law x = y — (¢ = ¢[x/y]). But in temporal logics, for in-
stance, we may wish to talk about fusion and fission of individuals.

The calculi QF .K + BF (resp. Of .K + CBF + BF) on free logic, with the Bar-
can formula (resp. BF and CBF) are incomplete for Kripke semantics, that is,
they both validate the necessity of fictionality —E(x) — [J—E(x), but none of
them prove this formula. See (Belardinelli, 2006) for a formal proof of this fact.
These incompleteness results extends to modalities stronger than K. Further-
more, in (Ghilardi, 1991) Ghilardi proved that Kripke semantics is incomplete
for a wide range of QML calculi.

We conclude that Kripke semantics is far from being completely satisfactory
from an actualist point of view, and it cannot handle fusion and fission of indi-
viduals. Moreover, the incompleteness results reveal confusion in the meaning
of formulas. QML demands a more perspicuous semantics.

4. Counterpart semantics

In the second part of this paper we introduce the counterpart semantics for
OML, which is based on Lewis’ intuition in (Lewis, 1979) that it is not possible
to identify individuals across possible worlds. He even denies that the same in-
dividual can exist in different worlds. Lewis substitutes the notion of trans-world
identity with a not further explained counterpart relation C, that - he claims
- need to be neither transitive, nor symmetric, nor functional, nor injective, nor
surjective, nor everywhere defined, but is only reflexive. Now a formula [l¢ is
true at a world w for the individuals a;,...,a,, iff in every world w'"accessible from
w, ¢ is true not for the same a ey but for their counterparts bl,...,bn inw'

In (Brauner & Ghilardi, 2007) Ghilardi, Corsi in (Corsi, 2001) and Kracht
& Kutz in (Kracht & Kutz, 2001; 2002) present various semantics for quantified
modal logic based on counterparts. We start with the definition of counterpart
frame.

5 We refer to (Loux, 1979), which contains relevant papers on this subject.
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Definition 4.1 (Counterpart Frame) 4 counterpart frame ‘F - c-frame in short
- is a 5-tuple {(W,R.D,d,C) s.t.
e W, R, D, d are defined as for K-frames, but D need not to satisfy the increas-
ing outer domain condition;
e Cis a function assigning a subset of D(w)xD(w") to every couple
{ww"y € R.

Note that we relax Lewis’s Counterpart Theory and allow individuals to ex-
ist in more than one world. Interpretations and models are defined as in Kripke
semantics, but we run into problems if the truth conditions of formulas are
given by means of infinitary assignments. Consider the following clause which
appears in (Fitting, 2004):

(M°w) E Uplyys... v, ] iff for every w' e W, for every w'assignment 7,
wRw'and C,, | (o(v),7(»)) imply (M'w") & ¢[y....,]

By this definition, Aristotle’s Law [1(¢p — ) = (Cld — [ly) is no longer valid,
see (Corsi, 2001) for a counterexample. For recovering this principle either we
have to assume Kracht and Kutz’s Counterpart-Existence Property: for w,w'e W,
for every a € D(w) there exists b € D(w’) s.t. Cm » (a,b); or we adopt finitary
assignments and typed languages as Corsi and Ghilardi do. Kracht and Kutz’s
condition is rather strong and has no deep philosophical motivation, so we
choose the second approach.

First of all, we say that each variable x; is an n-term, for n > i. The typed
language 1; is the set of first-order modal formulas inductively defined as fol-
lows:

« if Pis a k-ary predicative constant and 7" is a k-tuple of n-terms, then
PX(t},...t;) is an n-formula;

o if ¢, ¢’ are n-formulas, then —¢ and ¢ — ¢"are n-formulas;

¢ if ¢ is an n + I-formula, then Vx,, ¢ is an n-formula;

o if ¢ is a k-formula and 7 is a k-tuple of n-terms, then O)(,...01,,) is
an n-formula.

We write Ll(p[7,....1;]) as a shorthand for (CI(w[#,...5, 1)) (x1s.0,)-

For w € W, let a finitary n-assignment @ be an n-tuple of elements in D(w).
The valuation @ (x;) of an n-term x; is tantamount to a;. Finally, the truth condi-
tions for an n-formula ¢ at a world w w.r.t. a finitary n-assignment 4 are induc-
tively defined as follows:

(M) & Pty 0 (@ (1))0ni(t))) € I(PF )

(M”,y) Er=t iff Zi(l)ﬁ= a(t)
(Mw) E =y iff (M w) ¥ p
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(.’Mﬁ,w) Eyp—yp iff (M‘T,w) ¥y or (M‘T,w) =y
(M"iw) E [Op)(ty,....t;) iff  forevery w' € W, for every by,....b, € D(w'),
wRw', C,, (@(1,),b,) implies (M’,w") i
(M‘?,w) EVx,,p iff for every’a* € d(w),(.’ME'”*,w) =)

where @ - a*is the n + l-assignment {(a,.....a,.a*).

The truth conditions for the formulas containing the logical constant A,
v, <>, 3 and ¢ are defined from the ones above. The definitions of truth and
validity go as in Kripke semantics. Note that in counterpart semantics the
n-formulas (Cy)(zy.....¢,) and L(p[7},....7,]) are not equivalent: the former has a
de re reading, while the latter is de dicto. Only the implication from the first to
the second one holds, while the coimplication [(i[xy,....x,]) <> (Clp)(xy,....x,)
holds iff the counterpart relation is everywhere defined. Thus, substitution com-
mutes with the modal operators only in particular cases. In the next paragraph
we consider the advantages of counterpart semantics.

5. Counterparts and actualism

In par. 3.2 we focused on three features of varying domain K-models, which are
not completely satisfactory from an actualist point of view:

1. the presence of possibilia at least in the meta-language of Kripke seman-
tics;

2. the recourse to the existence predicate E and free logic to recover
quantification;

3. the violation of the principle of Strong Actualism, according to which
something not existing in a world w cannot have properties in w.

We show that counterpart semantics can deal with all these problems and solve
them, thus giving Actualism the first adequate formal representation probably.
As regards the presence of possibilia in the meta-language of semantics, we as-
sume that for every w € W, D(w) = d(w), i.e. the individuals, which it makes
sense to talk about in w, are all and only the objects existing in w. By this choice
the classic theory of quantification holds, therefore neither the existence predi-
cate E nor free logic are needed.

Pay attention to the different consequences of assuming D(w) = d(w) in
Kripke and counterpart semantics. In the former this constraint validates some
principles the kripkean reading of which is rejected by actualists, i.e. the con-
verse of BF. Hence, Kripke semantics eventually forces actualists towards vary-
ing domain K-models and free logic. In counterpart semantics we have none of
this, we can set D(w) = d(w) for every w € W and reject Possibilism and free
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logic at once. Clearly CBF is still valid in this framework, but its counterpart-
theoretic interpretation no longer clashes with the actualist account, as it only
corresponds to the following condition:

for ww' € W, for a € d(w) = D(w), me.(a, b) implies b € d(w") = D(w")

This constraint is actualistically acceptable, as it just says that every counterpart
in w’ of an existing object exists in w'.

As to the third point, if an individual a does not belong to D(w’), we need
not to ascribe properties or relationships to a in w'in order to avoid truth-value
gaps. In evaluating modal formulas w.r.t. the individual a, we consider the fea-
tures of ¢ only in the actual world, and of its counterpart(s) in the other acces-
sible worlds. Thus, counterpart semantics soundly formalizes Actualism, as it is
free from all the three faults listed above.

Furthermore, counterpart semantics can discriminate formulas which
are equivalent in Kripke semantics. In K-frames both BF and the necessity of
fictionality —F(x) — [J—E(x) are implied by decreasing inner domains: wRw'
implies d(w’) < d(w). On the other hand, in ¢frames BF tantamounts to the
surjectivity of the counterpart relation:

for ww' € W, for every b € d(w’) there exists a € d(w) s.t. C__ (a, b)

w,w

while —E(x) — C—E(x) holds iff

for ww' € W, for every b € d(w"), C__.a, b) implies a € d(w)

w,w
These are quite different constraints, which collapse into decreasing inner do-
mains only in virtue of the strong assumptions on individuals underlying Kripke
semantics. In fact, K-frames can be seen as a limit case of c-frames, where the
counterpart relation is everywhere defined and it is identity. In this case both
surjectivity and fictional faithfulness reduce to decreasing inner domains. We
refer to (Belardinelli, 2006) for a formal proof of this fact.

Finally, in counterpart semantics the necessity of identity and the necessity
of difference are not unrestrictedly valid, contrarily to what happens in Kripke
semantics, but correspond to precise constraints on the counterpart relation:

a cframe Fis
functional iff wRw’, Cwyw'(a, b) and CW,W'(a, b")imply b=5b'
iff FeE(Gx=y)->0x=y)
injective iff wRw',C_ . [a, b)and Cw,w'(al’ b)implya=a'

w,W

iff FE@zy)->0x#y)

Nonetheless, Leibniz’s Law unrestrictedly holds, without implying either
the necessity of identity or the necessity of difference.
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6. Conclusions

We conclude that counterpart semantics is a major improvement in comparison
to the kripkean framework. The former encompasses the latter, in addition it
adequately formalizes the actualist account of existence. In c-frames we can
discriminate formulas deemed equivalent in Kripke semantics and make further
subtle distinctions. Counterpart semantics is philosophically and logically mo-
tivated, thus deserves a thorough analysis.

We briefly outline some possible developments: (a) There is no standard for-
malism for typed modal languages, the one used here has to be improved and
made more natural. (b) Counterpart semantics is context-sensitive; contexts are
represented by the types of formulas, that make explicit the (finite string of) indi-
viduals w.r.t. which formulas are meaningful. This feature is relevant in applica-
tions to linguistics, in order to explicitly state the background of a meaningful
statement. (¢) In typed languages we syntactically discriminate between the de re
and de dicto reading of formulas; this characteristic is useful for epistemic logic.

Francesco Belardinelli
Department of Computing
Imperial College

180 Queen’s Gate

London SW7 2AZ
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Combining Modal Concepts:
Philosophical Applications*

Alexandre Costa-Leite

1. Introduction

Some mathematicians and computer scientists have the tendency to believe that
modal logic is just about relational structures (i.e. structures composed by a set
and relations on this set. Check for instance (Blackburn & De Rijke &Venema,
2001)). This is just one possible way to understand modal logic and, therefore,
it does not imply that modal logic can be reduced to such a conception. Con-
ceiving modal logics as “a tool for working with relational structures” (Black-
burn et al., 2001) allows logicians, especially mathematically-oriented logicians,
to unify a lot of different objects under the same label. However, for philosophi-
cal applications such a definition is not entirely adequate because it is not able
to capture single philosophical aspects of concepts. Modal logic cannot be re-
duced to the study of Kripke semantics; nor can it be reduced to the research
on what modalities such as possibility and necessity are. Indeed, one can find
many definitions of modal logic in the literature. Some of the most important
modal logicians have a lot of different conceptions of modal logic. At the very
beginning of Hughes and Cresswell (1996), one finds the following remarks:

“Modal logic is the logic of necessity and possibility, of ‘must be’ and
‘may be’. By this is meant that it considers not only truth and falsity ap-
plied to what is or is not so as things actually stand, but considers what
would be so if things were different. If we think of how things are as the
actual world then we may think of how things might have been as how
things are in an alternative, non-actual but possible, state of affairs - or
possible world.”

The above conception is clearly not founded in the “relational structures
slogan”, but in a much more passionate account of modal logic. Such a con-
ception can make someone think therefore that modal logic is not about the
real world, but just about fictional worlds, because modal logicians are talking

* Work supported by a grant of the Swiss National Science Foundation.
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about possible worlds or possible situations and such entities are not the real
world, although the real world is also a possible world. Nobody knows exactly
what possible worlds are or if they really exist. Questions about the ontological
status of possible worlds have been studied in the literature for a long time.
David Lewis (1986) is one of the most famous philosophers who argues that
possible worlds have an existence in the same way that the real world has. Such
a conception generates an interesting philosophical discussion. Accepting the
actual world as a constant realization of possible worlds (or possible worlds
becoming real by updating reality), follows that some possible worlds, those
which become real, have an ontological status and then really exist, given that
they are the actual world.

Other interesting definition of modal logic is defended by Chagrov and
Zakharyaschev (1997):

“Modal logic is a branch of mathematical logic studying mathematical
models of correct reasoning which involves various kinds of necessity-
like and possibility-like operators.”

It seems that both definitions of modal logic were targets of criticism spe-
cially developed by those people working on the “relational structures slogan”.
Blackburn et al. (2001) state the following:

“One still encounters with annoying frequency the view that modal logic
amounts to rather simple-minded uses of two operators ¢ and O. The
view has been out of date at least since the late 1960’s.”

Such a comment attempts to establish a new approach to modal logic. Even
if the “relational structures” are so fundamental to modal logic, there is no guar-
antee that in the future a new understanding of modalities will not change the
way actual researchers on modal logic think about their subject.

Modal logic is interesting for philosophers because it is related to the meta-
physical status of objects and with the content of an agent’s mental states. In
this sense, modal logic is the study of different existential dimensions of objects
and the relations between such objects. For example, in the case of propositional
logics, the objects to be considered are propositions and its different existential
dimensions are expressed by modalities. Given a hierarchy of possibility opera-
tors, each one would be responsible for a given existential dimension of a given
proposition. Modal logic, therefore, is a form of research that is concerned with
the different ontological dimensions of objects and shows how to manipulate
such dimensions.

In this article, such different dimensions of objects are considered in order to
show how to apply combined modal logics in philosophy. Modal logic is helpful
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because it is a tool to clarify the analysis of philosophical concepts. Combining
logics plays an important role in philosophical issues because there are some
statements containing non-interdefinable operators which cannot be formalized
using a single modal logic (i.e a modal logic with just one modal operator). The
philosopher usually constructs and finds complicated propositions containing
at the same time different modal notions. One example is that of the verifica-
tion principle, which can be stated as: “All true propositions can be known” this
principle often appears in discussions about realism and anti-realism. In the veri-
fication principle, one can find two non-interdefinable modalities: possibility and
knowledge. Therefore, a very simple modal logic is not able to formalize such a
sentence. (A detailed study to this problem is proposed in Costa-Leite, 2006.)
Another example, the one treated in this article, is that of non-skepticism about
the world. The statement “All contingent propositions are known” involves two
non-interdefinable modalities: contingency and knowledge. It is difficult to find
works studying in detail how to combine contingency and knowledge. Therefore,
attempts to study non-skepticism fail while formalizing the statement. In this
article, the philosophical statement above is studied from the viewpoint of com-
bined logical systems. Indeed, one very simple method called fusion is applied
to provide an example of formalization. The sense in which such complex for-
malisms can help in the understanding and formalization of statements linking
metaphysics and epistemology will be explained.

2. Formal tools and philosophical concepts

The general theory of modalities still awaits some basic developments, consider-
ing that up to now it is not clear what modalities are and just what properties do
modalities possess. There are a lot of different modalities and each modality is a
particular way to modify a proposition updating its dimensional content. Given
a proposition ¢, one can always introduce to it a modality. One could create, for
instance, 0@ (the possibility of ¢) or K¢ (the knowledge of ¢). Such modali-
ties allow the construction of expressions of the form “¢ is possible” and “p is
known”, for example. The intuition and the study of modalities is important to
understand other dimensions and properties of the actual world. Although in-
troducing modalities in a given proposition allows statements of the above form,
nothing can be said, from the viewpoint of non-combined modal systems, when
multiple modalities are interacting in a proposition. In this paper, the interac-
tions between two different families of modalities, those called metaphysical (or
alethic) modalities and those called epistemic modalities are examined. While
studying metaphysical and epistemic modalities there is also an attempt to pro-
vide explanations in metaphysics and epistemology, respectively. The study of
formal concepts can help in the analysis and understanding of philosophical
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areas. However, it is important to note how such formal tools and concepts are
limited. Van Benthem (2005) argued that:

“Here is the worst that can happen. Some atlases of philosophical logic
even copy philosophical geography (epistemic logic, deontic logic, aleth-
ic modal logic), leading to a bad copy of a bad map of reality”.

This statement seems to contain the key to discovering what is the exact role
of formal methods in philosophy. What Van Benthem is arguing for is that formal
tools can help, but cannot give an entire understanding of philosophical areas.
And there is no doubt that sometimes a formal approach to some philosophical
notion can even be a caricature of how to proceed. Van Benthem’s claim is cor-
rect. It is not reasonable to think that a formal study of metaphysical concepts
will examine entirely, or even replace a realistic and intuitive approach, because
many aspects of concepts cannot be formalized inside logical systems. In this
sense, it is a mistake to think that a formal approach to a given concept can give a
complete account to the whole of a given philosophical area. It seems that there
will always be some controversy or problem. His statement is interesting to show
in what sense reality and language are ingredients of two different things. Consid-
er the formal and logical modality of possibility. Does this modality correspond
to what possibility really is? It is hard to say. Formal tools help in the clarification
and partial description of what a concept really is, but it is never able to describe
the totality of the concept. One interesting property of formal concepts and tools
is that some philosophical revolutions can be reached by a formal approach to
concepts. One good example is that of Kripke (1980) who showed that there
are some necessary a posteriori truths. Such a result shows exactly the right role
of logic in philosophy: from one side, logic cannot eliminate all philosophical
problems and it cannot give a total description of a given concept. But from the
other side, the use of logic really helps to create some models of reality.

3. The problem

Gabbay (1999) pointed out the existence of a very interesting logical problem
which reflects directly in philosophical issues. This is called the fibring problem.
It can be explained in the following way: take a Kripke model <W,R,v> for ¢,
a formula ¢ and the complex modality ¢K. Given ¢, introduce to it the com-
bined modality in order to obtain OKg. Now, to determine the truth-condition
of the formula in the Kripke model one has to proceed in the standard way.
However, when the truth-condition of the modality K¢ is examined, the above
Kripke model cannot continue the procedure, because it is not able to recog-
nize what K means. In this sense, Gabbay proposed to associate to each world
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a new model using something called the fibring function in order to be able to
analyze the truth-condition of the complete formula. The idea of fibring is that
sometimes the models are not sufficiently rich to determine truth-conditions of
all propositions. Some many new variations of fibring have been proposed by
many researchers in the branch called combining logics. A general approach to
combined modalities and a great variety of references can be found in Costa-
Leite (2004).

The fibring problem appears everywhere in philosophical analysis. In Costa-
Leite (2006) tools from combining logics played an important role in studying
in detail the exact set to formulate and think about a paradox related to the veri-
fication principle. In this work, a new example is provided using combinations
of a metaphysical modality and an epistemic modality.

Metaphysical (or alethic) modalities are those related to the general struc-
ture of reality. The name metaphysical reflects this content. A metaphysical mo-
dality is one which is not directly related to the actual world, but with some po-
tential configuration of this world. The name alethic suggests that the notion of
truth appears in these modalities. The name alethic therefore is not a good one,
because one can think that just alethic modalities deal with the notion of truth,
what is incorrect. The general name metaphysical describes the job: modalities
which state potential configurations of reality.

Epistemic modalities are not directly related to the general structure of real-
ity, but rather with the cognitive status that an agent can have with respect to
the world. The name epistemic suggests, of course, some relation between agents
and the world. Epistemic modalities are also related to the concept of truth,
especially when it comes to analyzing truth-conditions of epistemic formulas.

The study of metaphysical, deontic, epistemic, temporal and others kinds
of modalities has been the target of much research. What has not been studied
are conditions where one can find interactions of different families of modali-
ties, as in the example above where the combination ¢0K¢ appears. Some other
examples of interactions are the following: KO, Ko =V ¢ (knowledge implies
contingency), Ko — ¢ etc. There are a lot of cases. Such statements show
propositions where two different families of modalities are interacting in a com-
bined complex statement. The study of interactions between metaphysical and
epistemic modalities deserves attention, because it provides a key to the door
linking metaphysics and epistemology, and allows therefore a study of philo-
sophical statements involving such concepts. Dana Scott (as cited in Hendricks
& Symons 2006) correctly said:

“Here is what I consider one of the biggest mistakes of all in modal logic:
concentration on a system with just one modal operator. The only way to
have any philosophically significant results in deontic logic or epistemic
logic is to combine these operators with: Tense operators (otherwise how
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can you formulate principles of change?); the logical operators (other-
wise how can you compare the relative with the absolute?); the operators
like historical or physical necessity (otherwise how can you relate the
agent to his environment?); and so on and so on. (Dana Scott, 1970)”

3.1 The example

One of the first examples, which is not explained here in detail, can be found in
Costa-Leite (2006). There is showed that the right language and logic in which
to formulate Fitch’s paradox is composed by a fusion of modal languages and
modal logics. In this sense, one can add the verification principle ¢ — ¢Kq
to such a fusion without the collapse of truth and knowledge. The reader is
invited to check that article to see how Fitch’s paradox can be studied from the
viewpoint of combined logics. Fusion of modal logics is a very simple method
to combine modal logics. Such method has been studied mainly by Gabbay, but
it has been discovered by Kracht & Wolter (1991), and also by Fine & Schurz
(1997). The method is briefly explained in the example.
Consider the statement

(ST) “All contingent propositions are known.”

There are many possible formalizations of the above sentence, it depends
in what logic it is being formalized. First it is clear that a modal logic with just
one modal operator cannot do the job. If one has just a metaphysical modal
logic, then it is not able to formalize the knowledge operator. In the same way,
with just an epistemic logic, it would not be possible to formalize contingency.
Therefore, just a combined formalism can realize the task. But what is such
combined modal logic?

Logics of contingency were proposed by Montgomery & Routley (1966),
and the authors presented a lot of systems taking contingency as a primitive
operator. Such an approach is followed here (i.e. contingency as a primitive
modality). Surely, if contingency is not taken as primitive, but defined using
possibility, then the formalization is different. The contingency of a formula ¢
is represented by V. One can read such formula as “¢ is contingent”. Con-
tingency of a formula ¢ means that ¢ is possible and it is possible non-¢. Epis-
temic logics use K to formalize knowledge. Consider now a language containing
<&,~,v,~,V>and a language containing <&,—,v,~,K>. A language containing V
and K among its symbols is certainly a logic able to formalize

(ST’) “If a proposition is contingent, then it is known.”
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The language <&,—,v,~,V ,K> is called a fusion of the above structures.
(Check Gabbay (1999) for details on fusions of modal logics.)

(ST) and (ST’) are equivalent ways to announce the non-skeptical thesis.
Such a thesis intends to show that the world is an object of knowledge. The first
conclusion of this paper is that to formalize the non-skeptical thesis one needs a
fusion of two languages, one for contingency and the other for knowledge.! But
what is the logic of such a language? What does it semantics looks like?

The answers to the above problems depend of what the reader intend to do,
assuming that there is no absolute answer. Using the fused language, the formal-
ization of (ST) or (ST’) is: V@ — K. The fused axiomatic system generated
using such a language determines whether (ST) is valid or not (the same for
(ST”)). Such axioms certainly contain at least the axioms of a minimal modal
logic of contingency and minimal epistemic logic. Fusion of two axiomatic sys-
tems Al and A2 consists in putting together both axiomatic systems in a big set
which contains all axioms of both A1 and A2, and all inference rules of both
(check Gabbay (1999) for a detailed study on fusions). Surely, from the seman-
tical viewpoint, fusion of two Kripke structures F1 and F2 consists in putting
together both accessibility relations. In this sense, if F1 = <W,R> is a structure
for contingency, and F2 = <W,P> is a structure for knowledge, the fusion of both
is the structure F1®F2 = <W,R,P>. The accessibility relations of the fused struc-
ture have the same properties of the original accessibility relations. It means
for instance that if R is reflexive in F1, then R is also reflexive in the fusion.
Let consider here a fusion where the accessibility relation R is reflexive and
symmetric, but P is just reflexive. Consider semantically (ST). Assume a fused
Kripke model F1®F2 = <W,R,P,v>, the formula V¢ — K¢ and put P — R. Take
W = {wl,w2} and the following valuation: v(¢) = {w1}. In such a model, the
formula is not valid, and therefore it is not a theorem of the fused logic, given
that completeness is preserved by fusions (check Gabbay (1999) for details on
completeness preservation). See the picture below:

R=P

R=P

=

wl w2

I' Classical propositional language can be viewed as a fusion of a language containing just nega-
tion and a language containing, for instance, conjunction. It is important to state that it is a fusion
because it is now clear what method is used to generate such a language.
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In the world w1 and w2, V¢ holds, but in w1l and w2 K¢ does not hold.
In this sense, the formula is not valid in the model. Surely one could create a
modal logic showing that (ST) is valid, but again it depends of what one intends
to do. What is important to state is that a complex formula involving two non-
interdefinable modalities cannot be analyzed from the semantical viewpoint
without a combined modal system able to understand at the same time what
each one of the modalities means.

4. Conclusion

Combining modal concepts allows the study of complex statements formulated
in natural languages. Such kind of approach provides a formal study on many
different philosophical statements. In the example studied in this text, a con-
cept from metaphysics (contingency) is linked to a concept from epistemology
(knowledge) using a fusion of Kripke models. In this sense, combining concepts
formally generates new insights in the study of the bridges between many differ-
ent philosophical subjects.?
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The Use-Mention Distinction!

Marie Duzi

1. Introduction

In this paper we are not going to examine the linguistic problem of distinguish-
ing between using and mentioning expressions as the title might suggest. Instead,
we are going to logically analyse particular different ways of using expressions.
When we use an expression in a communicative act then we communicate its
meaning; we are not interested in other meanings the words might have had.
Logical analysis presupposes understanding and linguistic competence.

Our analyses comply with the principles of compositionality and referential
transparency: When an expression E is used to communicate its meaning then
E expresses the same entity as its meaning and denotes the same entity as its de-
notation (or ‘semantic value’) regardless of the embedding context. This means
rejecting so-called reference shift across the board. We are going to show that
instead of the ‘shifts’ of reference there are different ways in which £ may occur
relative to a logical-semantic context. Either its meaning is used to pick up an
entity denoted by E (if any) or the meaning itself is just mentioned as an entity
referred to by another expression E” of which E is a subexpression. And if the
meaning is used, it may occur either with supposition de dicto or de re.

The underlying Transparent Intensional Logic (TIL) is a hyper-intensional
A-calculus, which means that the terms are not interpreted as denoted func-
tions. Rather, they denote, or ‘encode’, (algorithmically) structured procedures
known as TIL constructions that are assigned to expressions as their (structured)
meanings®. Constructions, when being executed, produce functions. The theory
also contains the resources to distinguish in a principled manner between func-
tions and their values by distinguishing between constructions occurring inten-
sionally and extensionally.

! This work has been supported by the Grant Agency of the Czech Republic (project No
401/04/2073, Transparent Intensional Logic (systematic exposition)), and by the Project No.
1ET101940420 “Logic and Artificial Intelligence for multi-agent systems” pursued within the pro-
gram “Information Society” of the Czech Academy of Sciences.

2 The notion of structured meaning and hyperintensionality has been introduced by Cresswell
(1975). A similar semantic conception has been applied by Yiannis Moschovakis, see his (1994),
(2006).
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The examples in, e.g., Gamut (1991, pp. 203, 204) illustrate the problems
which may arise from the confusion of different ways of using expressions. To
adduce one, consider the following (obviously invalid) argument:

The temperature in Amsterdam equals the temperature in Prague.
The temperature in Amsterdam is increasing.
The temperature in Prague is increasing.

There is an essential difference between the way of using the term ‘the tem-
perature in Amsterdam’ in the first and the second premise. In the first premise
the (empirical) function, namely the magnitude TA denoted by ‘temperature in
Amsterdam’, is used to point to its current actual value; the premise claims that
this value equals the current value of another magnitude 7P (denoted by ‘the
temperature in Prague’). However, the second premise ascribes the property
of being increasing to the whole magnitude 74 regardless its current value: the
function TA itself is not used (as a pointer to its current value) but only men-
tioned.

Here is another example:

Charles calculates 2 + 5.
2+5=17
Charles calculates 7.

(Calc)

Again, there is a substantial difference between using the term ‘2 + 5 in
the first and second premise: whereas in the first premise the meaning of
‘2 + 5 is mentioned, in the second one it is used to identify the number 7. The
first premise expresses Charles’ relation(-in-intension) to the very procedure of
calculating 2+5. Charles is trying to execute the procedure, and the procedure,
the meaning of the expression ‘2+5°, is mentioned here. When evaluating the
truth-conditions expressed by the first premise, the procedure of adding num-
bers 2 and 5 is not executed; this is Charles’ responsibility.

We are going to solve the apparent paradoxes by means of the TIL fine-grained
analysis of premises that neither makes it possible to over-infer (which leads to
paradoxes) nor under-infer (which leads to a lack of inferential knowledge).

2. TIL in brief

In this chapter we provide just a brief introductory explanation of the main
notions of TIL. For exact definitions see, e.g., Tichy (1988), Materna (1998),
Materna (2004).

Constructions are procedures, or instructions, specifying how to arrive at
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less-structured entities. Qua procedures they operate on input objects (of any
type, even on constructions of any order) and yield as output (or, in well defined
cases fail to yield) objects of any type; in this way constructions construct par-
tial functions.

By claiming that constructions are algorithmically structured, we mean the
following: a construction C - being an instruction - consists of particular steps,
i.e., sub-instructions (or, constituents) that have to be executed in order to ex-
ecute C. The concrete/abstract objects an instruction operates on are not its
constituents, they are just mentioned. Hence objects have to be supplied by
another (albeit trivial) construction. The constructions themselves may also
be only mentioned: therefore one should not conflate using constructions as
constituents of composed constructions and mentioning constructions that enter
as input into composed constructions. Mentioning is, in principle, achieved by
using atomic constructions. A construction is atomic if it is a procedure that
does not contain any other construction as a used constituent but itself. There
are two atomic constructions: variables and trivializations.

Variables are constructions that construct an object dependently on valu-
ation: they v-construct, where v is the parameter of valuations. When X is an
object (including constructions) of any type, the Trivialization of X, denoted ’X,
constructs X without the mediation of any other construction.

TIL constructions as well as the entities they construct all receive a type.
The formal ontology of TIL is bi-dimensional. One dimension is made up of
constructions, the other dimension encompasses non-constructions. On the
ground level of the type-hierarchy, there are entities unstructured from the al-
gorithmic point of view belonging to a #ype of order 1. Given a so-called epis-
temic (or ‘objectual’) base of atomic types (o-truth values, t-individuals, t-time
moments / real numbers, m-possible worlds), we have the induction rule for
forming types of partial functions: where o, B,.....3, are types of order 1, the set
of partial mappings from 3, x..x B, to a, denoted (& B,...8,). is a functional
type of order 1 as well.?

Constructions that construct entities of order 1 are constructions of order 1.
They belong to a type of order 2, denoted by *,. By using the induction rule, any
collection of partial functions, type (& B,...8,), involving *, in their domain or
range is a fype of order 2. Constructions belonging to a type *, that identify enti-
ties of order 1 or 2, and partial functions involving such constructions, belong
to a type of order 3. And so on ad infinitum.

There are two compound constructions, which consist of other construc-
tions: Composition and Closure.

Composition is the instruction to apply a function f to an argument A in
order to obtain the value (if any) of fat A: if X v-constructs a function f of a

3 TIL is an open-ended system. The above epistemic base {0, 1, T, ®} was chosen, because it is apt
for natural-language analysis, but the choice of base depends on the area to be analysed.



36 Marie Duzi

type (o Bl...[}m), and Y,,....Y, v-construct entities B,....B,, of types Blﬁm
respectively, then the composition [X ¥} ... Y, ] is a construction that v-con-
structs the value (if any, of type a) of the (partial) function f at the argument
(By, ..., B,,). Otherwise the composition [X Y, ... Y, | does not v-construct any-
thing: it is v-improper.

Closure is the procedure of constructing a function by abstracting over vari-
ables, i.e., the instruction to do so: If x;, x,, ....x, are pairwise distinct variables
that v-construct entities of types Bl, [32, Bm, respectively, and Yis a construc-
tion that v-constructs an entity of type o, then [Ax,...x,, ¥]is a construction called
Closure, which v-constructs the following function f of the type (a B;...5,,),
mapping B, x..x B,, to o Let By,...B, be entities of types B.....3,,, respec-
tively, and let w(B/x,,....B,,/x,,) be a valuation differing from v at most in as-
sociating the variables x,...x, with B,,...,.B, , respectively. Then f associates
with the m-tuple (B,,...,B,,) the value v(B,/x/.....B, /x, )-constructed by Y. If Yis
v(B,/x,....B,,[x,,)-improper, then fis undefined on (By.....B, ).

Finally, higher-order constructions can be used twice over as constituents of
composed constructions: If X is a construction that v-constructs a construction X',
then %X is a construction called Double Execution. It v-constructs the entity (if any)
v-constructed by X'. Otherwise the Double Execution °X is v-improper.

Functions values of which depend on a modal (type ®) and/or temporal
(type 1) parameters receive a spatial status in TIL likewise in any intensional
logic:

(a-)intensions are members of a type (o), i.e., functions from possible worlds
to the arbitrary type a.; (o-)extensions are members of the type o, where o is not
equal to (Bw) for any f3.

Notational conventions: An object A of a type a is called an a-object, denoted
Afa. That a construction C y-constructs an a-object is denoted C —, o.. We
write ‘Vx A’, ‘Ix A’ instead of ‘[OV* Ax A]’, [°3* Ax A]’, respectively, when no
confusion can arise. We also often use an infix notation without trivialisation
when using constructions of truth-value functions A (conjunction), v (disjunc-
tion), O (implication), = (equivalence) and negation (=), and when using a
construction of an identity.

Intensions are frequently functions of a type ((at)w), abbreviated a._ . We
use variables w, w,, w,,... as v-constructing elements of type ®, and 1, 7, ,, ... as
v-constructing elements of type t. If C — a._ v-constructs an o-intension, the
frequently used composition of the form [[C w] ¢], v-constructing the inten-
sional descent of the a-intension, will be abbreviated as C, .

Some important kinds of intensions are:

Propositions of type o, aproperties of type (oa.)_,, relations-in-intension of type
(0B--B,)) 1, Omitting = we get the type (0B,...3,,,) of relations-in-extension (to
be met mainly in mathematics); o-roles, offices are of type o, where o # (o),
frequent are those with type v . Individual roles correspond to what Church in
his (1956) called “individual concept”.
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3. Using /| Mentioning constructions

The distinction between using and mentioning constructions is characterised
as follows*:

Let D be a sub-construction of a construction C. Then an occurrence of D is
mentioned in C if it is not necessary to execute the occurrence of D in order to
execute C. Otherwise the occurrence of D is used in C as a constituent.

Following the above example of Charles’ calculating, the analyses of prem-
ises Py, P, are:

Types: Charles | v, Calc(ulate) [ (0 v %) s+ / (z71); 2,5, 7/t =/ (017).
P,: hwht [°Cale,, °Charles °[*+ °2 °5]] (/#5,—>0
P, [O= [0+ 02 05] 97] — o.

o)

Now it is obvious that the construction [*+ °2 5] (— 1) cannot be substi-
tuted for the construction °[*+ °2 95] (— =) into the P -constituent. Such a
substitution would constitute a type-theoretical category mistake. Calculating
is not a relation(-in-intension) between an individual and a particular number;
rather it is a relation(-in-intension) between an individual and a construction of
a number. We see no reason to challenge the unrestricted validity of Leibniz’s
Law of substitution (except for quotational contexts), and TIL has the resources
to validate the Law in any sort of context, which we are going to show.

The occurrence of the construction [°+ °2 °5] is mentioned in the P -con-
stituent by the Trivialisaton °[%+ 92 °5], whereas it is used in P,. In order to
evaluate (for a state of affairs (W, 7)) the truth-conditions specified by P, one
does not have to execute the computational step [+ °2 °5]. P| has nothing to do
with whether Charles succeeds in executing the step [+ 22 95].

Note that an occurrence of a construction can be mentioned in C indirectly
by being a constituent of another sub-construction which is mentioned in C.
Moreover, a Double Execution may suppress the effect of Trivialisation. For
instance, though the construction [+ °2 95] is mentioned by the construction
010+ 02 05], the 20[%+ 92 95] constructs the number 7, and both °[%+ 92 °5] and
[0+ 02 95] are used in 2°[%+ 92 95] (the former by itself and the latter by the for-
mer). Unlike Trivialisation, which is an operation of mentioning, Execution and
Double Execution are operations of using.

Concerning the case of ‘indirect mentioning’, consider as an example the
sentence

“Charles knows that dividing six by three makes two and dividing six by
zero is improper.”

4 For the definition see Duzi & Jespersen & Materna (2007, §4.9).



38 Marie Duzi

Note that if we wanted to analyse this sentence in any standard logic (in-
cluding Montague’s intensional logic, which lacks constructions or something
akin to them) we would not have a tool to analyse this sentence in the logic. We
would have to switch into a kind of linguistic metamathematics.

Let Improper be the class of constructions of order 1 which are v-improper
for any valuation v. Hence Improper | (0%,) belongs to a type of order 2. When
knowing the above fact, Charles is related to a respective construction (belonging
to *,) of the value T. Therefore, knowing is here an (o 1 *,)_ -object.

Types: 0, 2, 3, 6 / t, Div [ (tt1), Improper | (0* ), Know [ (0 1%*5)
The analysis of the embedded clause is:
(Em) [[[°Div %6 93] = °2] A [“Improper °[°Div °6 °01]].

The construction (Em) constructs T. All its sub-constructions occur as con-
stituents except of [°Div %6 °0] which is mentioned in (Em) by its constituent
91°Div %6 °0]. Consequently, the second occurrences of °Div and °6, and the oc-
currence of °0 are mentioned in (Em) as well.

The analysis of the whole sentence is:

(C) wht [’Know,, *Charles °[[[°Div °6 °3] = °2] A
[°*Improper °[°Div °6 °0]]1]

Now all the occurrences of the constituents of (Em) are mentioned in (C).
The context of Charles’s knowing is hyper-intensional (or constructional in TIL
jargon), and a hyper-intensional (i.e., higher-order) context is dominant over
lower-order functional (intensional / extensional) contexts.

If a variable is mentioned in C then it is not free for substitution, it is ®bound.
Consider the (true) sentence

(Dv) “There is a number such that dividing any number by it is improper.”
The embedded clause can only be construed as expressing the construction
(1) [“Improper °[°Div x y]].

Now we need to abstract and quantify over “bound variables x, y, which is
impossible without some ‘pre-processing’ of (1). The solution goes via substitut-

ing (constructions of) the numbers v-constructed by x, y for the occurrences of
x, y into (1). To this end we use the following functions:
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Tr_ [ (%, ©) - the mapping which takes a number and returns its Trivialisation

Suby [ (****,) - the mapping which takes a construction C}, a variable x,
and a construction C2 to the resulting construction C3,
where Cj is the result of substituting C; for x in C2.5

Note that there is an essential difference between using the construction
Trivialisation and the 7r_function. Whereas the construction 9% binds the vari-
able x and constructs just x, the variable x is free in the composition [°TrT x]
which v-constructs the Trivialisation of the number that v assigns to x.

The analysis of the sentence (Dv) is now as follows:

(DV) [°3, Wy [V Ax [“Improper [°Sub [°Tr_ y] °y [°Sub, [°Tr_x] °x
o[°Div x y111111.

Let v assign 0 to y and 6 to x. Then the sub-construction
[°Sub, [°Tr ] % [°Sub, [°Tr, x] °x °[°Div x y]]]

y-constructs the Composition [°Div °6 °0], which belongs to the class Improper.
Since this holds for any valuation of x, (Dv’) v-constructs T. (Recall that the
existential quantifier 3./ (o(ot)) is the mapping that returns T at a class which
is non-empty, otherwise F.)

Montague and other intensional logics interpret terms of their language as
the respective functions, i.e., set-theoretical mappings. However, these map-
pings are the outputs of executing the respective procedures. Montague does
not make it possible to mention the procedures as objects sui generis, and to
make thus a semantic shift to hyperintensions. Yet we do need a hyperinten-
sional semantics. Notoriously well-known are attitudinal sentences which no
intensional semantics can properly handle, because its finest individuation is
equivalence.® Typical cases of mentioning constructions are sentences express-
ing hyper-intensional attitudes which are attitudes to the meaning of the embed-
ded clause (see § 3.2).

3.1. Constituents occurring with de dicto / de re supposition.

This difference is closely connected with the distinction between ‘using and
mentioning functions’. By the latter we mean (roughly): When we use a func-
tion /' (to point to its value) then we apply f'to its argument in order to obtain

5> See Tichy (1988, pp. 74, 75)
% See Gamut (1991, p.73)
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the value (if any) of f at the argument; when mentioning /' we only talk about
the whole function f.

For the sake of simplicity we will characterise these two ways only for con-
structions of o-intensions of type o . Generalisation for constructions of
mathematical functions can be found in Duzi et al. (2007, §4.9).

To adduce an example, compare the sentences:

(S8;)  “The President of the USA is a Republican”.
(S,)  “G.W. Bush became the President of the USA”.7

When George W. Bush became the President of the USA he certainly did
not become himself (or any other individual), and when he once stops being
the President he will not stop being himself. George W. Bush began occupying
the office of the President of the USA (PresUSA for short), and will soon stop
occupying the office (writing in January 2007). Hence (S,) relates Bush to the
office itself, and ‘to become’ denotes a (o 1 1), -object. Using time-honoured
terminology, we say that “The President of the USA’ is used with de re or de dicto
supposition in (S;), (S,), respectively.

The respective analyses of (S;) and (S,) are as follows:

Types: President (of something) / (11)
Become | (011

Synthesis:

(Sy)  Awht [°Republican,,, Mwht [*President,, "USA], ]

(S,")  Awit [°Become,,"Bush Mwht [*President,, "USA]].

I Republican | (o1)
Bush/v, USA/v.

Tw’

‘CU))T(,O;

The proposition constructed by (S,) takes the value T in those w, 7 in which
the individual that occupies PresUSA belongs to the class of individuals that in-
stantiate the property Republican, and F if the individual does not belong to the
class. It might seem that in such states of affairs w, r where there is no President
of the USA the proposition should be false. However, if it were so, the proposi-
tion that the President of the USA is not a Republican would have to be true?,
which would in turn entail that there is a President of the USA. Therefore, in
those w, t where PresUSA is vacant, the proposition has no truth-value.’

On the other hand, the proposition denoted by (S,) remains true (false)
even in those states of affairs w, r where there is no President of the USA. Actu-

7 Cf. similar examples in Gamut (1991, §§ 6.4.1 - 6.4.3)

8 See Strawson (1950)

9 Remember that our logic is a logic of partial functions. Once a constituent (Awz [OPresidentwt
OUSA] ;I our case) of a compound construction is v-improper, the whole Composition is y-im-
proper, and the function (here, a proposition) constructed by the respective Closure is undefined
at its argument.
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ally, its truth-value does not depend on the occupancy of PresUSA at w, 7. In
particular we cannot substitute a construction of the current occupant of the
office. If we could do this, we could deduce that Bush became himself.

To characterise the de dicto / de re distinction, we quote Tichy:

Semantically, the difference between the de dicto and de re amounts to
this. Suppose D is a constituent of an application C, D constructs office
D and C office C. If D occurs in C with supposition de re, then the oc-
cupancy of C'in a world Wand at time T depends only on the occupancy
of Din W at T: it is irrelevant what (if anything) occupies D in worlds
other than W or at times other than 7. But if D occurs with supposition
de dicto, the occupancy of Cin Wat T depends on the occupancy of D in
all worlds at all times. (1988, p. 216.)

The de dicto context is dominant over the de re context. Consider another
sentence:

(S3)  “If the President of the USA is a Democrat then Charles believes that
the President of the USA is Bill Clinton.”

An adequate analysis of the consequent has to respect the fact that Charles
can believe that the President of the USA is Bill Clinton even if the President is
actually George W. Bush, and even if the President does not exist. The proposi-
tion that the President of the USA is Bill Clinton is mentioned in this clause, the
context of Charles’ believing is intensional (Believe' / (0 10_,).):
(S3con)  AwAr [°Believe,, *Charles Awht [AwAt [*President,,"USA],,

= OClinton]].

The construction expressed by the embedded clause, namely
(S3emp)  AwAZ [Awht [°President,, *USA],,, = °Clinton]

occurs de dicto in (S;,,,). as well as Awht [*President,, "USA]. Quoting again
from Tichy:

[I]n general, a de re constituent of D is a de re constituent of any applica-
tion in which D appears as a de re constituent; a de re constituent of D is
a de dicto constituent of any application in which D appears as a de dicto
constituent. A de dicto constituent is a de dicto constituent of any applica-

10" We conceive believing as a relation-in-intension of an individual to a proposition here. See, how-
ever, §3.2.
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tion in which D appears as a (de re or de dicto) constituent. Briefly, de
dicto is the dominant one of the two suppositions (1988, p. 217).

The sentence (S5) expresses the construction:
(S5 Awhr [°2 Awht [°Democrat,,, Awht [°President, , "USA|

[AwAt [°Believe
= %Clinton]]]]

]
wilwe
OCharles [\wt [Awht [°President,, "USA],,,

wt

wt]'

Due to the fact that the construction expressed by the antecedent occurs in-
tensionally descended!! with respect to w, 7, the first occurrence of AwAr [*Presi-
dent,, OUSA] is with de re supposition in (S5). But though the construction
(S3.0n) 18 subjected to the intensional descent, the second occurrence of AwAz
[°President,,, USA] is de dicto in (S;,,) as well as in (S;'), because the con-
struction (S5,,,,) is not subjected to the intensional descent.

Generalising a bit, let S be a construction of an a-intension of a form AwAz
C, and let D be a constituent of C. We will say that D occurs in the intensional
context of C if the occurrence of C is used with de dicto supposition in S, other-
wise D occurs in the extensional context of C.

Referring for details to, e.g., Duzi (2003, 2004), we now recapitulate the two
de re principles:

Rule of substitution of congruent constructions de re. Let C —> o, ., D — oL
be v-congruent constructions, i.e. C,, = D, , and let S(D/C) be a construction
that arises from S by substituting D for the de re occurrences of C in S. Then
S, =S(D/C),,

The rationale behind the Principle is that what is predicated of the occupant
of C at (W, T) is what is predicated of the occupant of D at (W, T) on condition
of co-occupation of C and D at (W, T).

Principle of the existential presupposition. 1f a construction C of an a-office
C occurs with de re supposition in a hyper-proposition P, then P has a presup-
position that C exists (is occupied); Exist [ (00 )0 AWAL [OExistwt Cl.

Thus the following arguments are valid (P — (oa),,):

ikt [P, C, ] dwht =[P, C, ]
Mwht [Exist,, C] Awit [°Exist,, C|

Since the property of existence EXist [ (o o)., (or rather occupancy of
an a-office) can be defined by means of the existential quantifier (x > a, r —>

Oy =o  (OOLOL))

Awht Ar [°3 Ax [O= x 11

' j.e., To-extensionally
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the conclusion can be equivalently expressed by the construction

e [3 Ax [°=, x C,,]].

3.2. Attitude reports

This section provides a ‘taxonomy’ and schematic TIL analysis of attitude re-
ports. Further details and discussion can be found, e.g., in DuZzi (2004) and in
Duzi & Jespersen & Miiller (2005).

a) “Taxonomy’: B stands for ‘believing’, ‘knowing’, etc.; Ch [ vis an agent; a —> 1
is a subject of the attitude; P— (o1),,, is a construction of the property ascribed
to a.
L. Implicit (propositional) attitudes: B — (010 ).,
a) De dicto: Ch Bsthatais P.

b) De re:
i) ais B-ed by Chtobe aP. passive variant
ii) Ch B-s of a that /e (namely «) is a P. active variant with

anaphoric reference he
IL. Explicit (hyper-propositional) attitudes: B* — (ot*,).
a) De dicto: Ch B¥s that a is P.
b) De re:
i) ais B*-ed by Chtobe a P. passive variant
ii) Ch B*-s of a that he (namely a) isa P.  active variant with
anaphoric reference he
b) Analytic schemes.
Ad Y) Implicit (propositional) attitudes
L.a) de dicto: Mt [B,, OCh Awt 7, a,ll

L.b i) de re passive variant:
First we specify the coarse-grained logical form of the sentence:
AWAL [OBCPWI a,, ], where BCP [ (o1),,, is the property of being B-ed by Ch
to be a P. Second, we have to refine the coarse-grained form by defining the
property BCP (x — 1):

OBCP = hwt [Ax [B,, OCh Mwht 7, x111
Third, the logical form'? of I.b i) is obtained by replacing the left-hand side
Trivialisation by the right-hand side definition of the property:

Mt [[Awht [Ax [B,, OCh hwt [P, x111,, a,,l
which can be B-reduced to:

Mt [Ax [B,, °Ch hwt [P, x]] a

wt] :

12 For the definition and details on the notion of logical form, see Duzi & Materna (2005), and
Duzi et al. (2007).
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Further ‘syntactic’ B-reduction would not be valid, because we would substi-
tute the de re occurrence of a,, for x into the intensional context (de dicto)
of AwAt [P, x], which is not an equivalent transformation due to partiality
(even in case of a substitution that prevents the collision of variables by their

renaming).

L.b ii) de re active variant:
First, a coarse-grained analysis:
AWAL [OB-of;W 'Ch a,, pl,
where B-of | (ouwo_, )., is an intension relating an individual to another
individual and a proposition *p — O
Second, we have to define the construction of the relation B-of. Schemati-
cally:
B-of (x-who, y-whom, that-he=whom is a P);
xyhe =1, Suby [ (%% % %), T, [ (*q1):
B-of = Awht Axy p [°B,, x *[°Sub, [°Tr ] ®he p]].
The Double Execution is necessary here in order to descend from hyper-
intensional context of the propositional construction (the result of applying
the Sub| function) to the intensional context of the proposition to which the
individual v-constructed by y is related.
Third, the analysis of ILb ii) is obtained by substituting °C# for x, a,,fory
and °[Awhz [P, he]] for p:
AWAL [OBWI OCh 2[OSub1 [OTrL a,,l Ohe [ Awit [P, helll].
Note that the substitution of a,, for y is valid here, because the variable y
occurs in the extensional context of the above definition.

Ad 1) Explicit (hyper-propositional) attitudes
II. a) de dicto: Awit [B*,, "Ch °[hwAt [P, a,,]]]

I1. b i) de re passive variant:
First, a course-grained analysis rendering the logical form is AwAz [°B *CP,,
a,,], where B*CP | (o1),,, is the property of being B*ed by Ch to be a P.
Next, we have to refine the analysis by defining the property (x — 1):
OB*CP = Awht [Ax [B*,, °Ch [°Sub, [°Tr x] °x °[Awkt [P, x]11]].
Now we have to use the Sub1 and Trl functions, because the variable x oc-
curs in the hyper-intensional context of °[Awhz [P,, x]], and it is thus not
free for A-binding. However, we don’t need the Double Execution of the
result of applying the Sub, function, because the agent Ch is related directly
to the hyper-proposition.
Second, by substituting the above definition of the property, we obtain a
fine-grained analysis:
Awht [Awht [Ax [B*,, °Ch [°Sub, [°Tr x] °x°[Awhs [P, x11111,, 4],
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which can be B-reduced to:
Mt [Ax [B*,, °Ch [°Sub, [°Tr, x] % °[Awdt [P, x]11] a,,,].

Further ‘syntactic’ B-reduction is now an equivalent transformation. How-
ever, its performing results in the analysis of the active variant ad ILb. ii):
Akt [B¥,, °Ch [OSub1 [OTrl a,,l Ox O Awht (P, x111.

11.b ii) de re active variant:
First, a coarse-grained analysis:

Mt [B*of,,,°Ch a,,, pl; B-of | (oux,)_ . p— *,,p —0_,.
Second, we have to define B*of (x-who, y-whom, that-he=whom is a P):
0B-of = Awht Axy p [°B,, x [°Sub, [*Tr, y] ®he p]].
Third, the analysis of ILb ii) is obtained by substituting ’C# for x, a,, for y,
and °[Awht [P, hel] for p, which is correct even in case of a,, being v-im-
proper, because y occurs in the extensional context of the above definition:

Jowt [B*,, °Ch [Sub, [°Tr, a, ] he [hwit [P, hell]].

wil
Remark:
It is easy to prove that de re and de dicto attitudes are logically independent, nei-
ther the de re case is entailed by the respective de dicto variant, nor vice versa.
However, if a is a rigid designator of an individual, @ — 1 and a is v-proper
for any v, then in case I. the de dicto and de re attitudes are logically equivalent,
whereas in case II. it is not so: in this case only the active and passive variant of
the de re attitude are logically equivalent.

Case 1. Implicit propositional attitudes:
AwhAt [B,, OCh Awt [P, all =
Mwht [Ax [B,, °Ch hwht [P, x]] a] =
Mwht [B,,,°Ch *["Sub, [°Tr a] °x °[Awlt [P, x]]]]

Case II. Explicit hyper-propositional attitudes:
At [B¥,, OCh °[Awht [P, alll =
Mt [hx [B*,, °Ch [°Sub, [°Tr, x] °x °[Awht [P, x]1] a] =
AWAL [B*WZOCh [‘)Sub1 [OTr1 a] % °[Awht 7, xI11.
For, the hyperpropositions to which C is related are not identical:
O Awe [P, alll = ["Sub1 [OTrl a] % [ Awht 2, x111;
they are only equivalent on the assumption of a being proper:
[Awht [P, al]] = 2[“Sub1 [OTrl a] % °[Awht [P, xI1].

The reason for the above non-identity consists in the fact that while [(’Trl al
v-constructs the Trivialisation of the individual v-constructed by a, a itself may
be substituted for by a composed construction v-constructing the same indi-
vidual.
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3.3. Scheme of TIL rules of inference

Summarising, we are going to provide a scheme of valid TIL rules of inference.

First, we define identity, equivalency and v-congruency of constructions.

Let C, D[ *,, C, D — o be constructions, =B / (oPP) the identity of B-entities.

Now we use the following notational abbreviations:

C(y) - a construction with a free variable y

C(D]y) - the result of a collisionless substitution of D for y in C;

C(D’|D) - the result of the collisionless replacement of D by D’ in C;

v-Improper(A)/v-Proper(A) - the construction A4 is/is not y-improper for a valu-

ation v;

Improper(A)] Proper(A) - the construction A is v-improper/v-proper for all valu-

ations ».

Definition: C, D are v-congruent iff either C and D v-construct the same o-entity,

C=, D, or both Cand D are v-improper; C, D are equivalent iff C, D are y-congru-

ent for all valuations v; C, D are identical iff °C =, °D.

Claim (B-reduction ‘by value’):

The Composition (1 <i<m, x;— B, D;—, B, ¥ =, )

(Ap) [[’x,..x,, Y] D,..D, ]

is equivalent to the (computationally) reduced construction
(ApB) 2[°Subn [°Trﬁl D] Oxl [OSubn [(’Trﬁ2 D,] °x2...
[°Sub, [°Trg,, D, 1 °x,, °Y]...]].

Proof:

a) According to the definition of Closure, Composition and Double Execu-
tion, the construction (Ap) is v-improper iff for some i (1 < i< m) D, is
v-improper. Then (Apf) is v-improper as well.

b) Let D, be v-proper for all i, 1 <i<m, and let D, »-construct entities a;, respec-
tively. Then according to the definition of Composition and Closure, (Ap) is
either v(a,/x,)-improper if Yis v(a,/x,)-improper, or (Ap) v-constructs what is
v(a,[x;)-constructed by Y. In other words, (Ap) is v(a,/x;)-congruent with ¥.
Now, the result of applying the respective substitutions in (App) m-times is
the construction that is also v(a;/x;)-congruent with Y. Therefore, (Apf) and
(Ap) are v(a;/x;)-congruent.

Since (Ap), (ApP) are thus v-congruent for any valuation v, they are equiva-

lent.

As a consequence, we can now formulate particular rules in more details.

Tipes:y —, B, D —, B, C(y) =, o, by C(») =, (o), [[Ay C(»)] D] — , .

a) Closure: Proper([\y C(v)])

b) Compositionality and B-rule:

v-Improper(D)

Comp
v-Improper([Ay C(y) D))
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Subst v-Improper(D)
v-Improper(*[°Sub [°Tr D] %y °C(y)])
Brule v-Proper(D)

*[°Sub [°Tr D1 % °C(»)] = [[Ay C(»)] D] = C(D]y)

¢) Rules of valid Substitution (Leibniz’s law).
i) Let C — (a By...,,), m > 0, be a constituent of D and let C occur in
D (B,...3,,)-extensionally'*. Let D, — B,..... D,, — B, andlet [CD, .. D, ],
[C" D, .. D, ] be v-congruent. Then D([C" D, .. D, 1 /[C D, .. D,]) is
y-congruent with D.
ii) Let C — (a By...3,,), m = 0, be a constituent of D and let C occur in
D (ap;...,,)-intensionally. Then if Cand C are equivalent, D and D(C’/C)
are equivalent as well.
iii) Let the occurrence of C be mentioned* in D and let °C = °C Then D and
D(°C/°C) are equivalent.
Note that the de re rule of existential presupposition is a special case of the Comp
rule, and the de re rule of substitution of congruent constructions is a special
case of i).

4. Conclusion

Logic should help to find the objective structures underlying expressions of a
language, and it should be now clear how ‘value gaps’ can be accommodated
via improper constructions and partial functions, and it’s also very clear why we
must accept improperness and partiality: when modelling entities the empiri-
cal expressions talk about by intensions, functions from possible worlds, these
functions have to be partial, for there are intensions we talk about that do not
have a value in particular w at time ¢. TIL handling partiality is determined by
the above principles that turn on the same conception of language. A piece of
language serves to point to a logical construction beyond itself, its sense. Our se-
mantics runs smoothly even with partial functions and improper constructions
that are used / mentioned in (hyper-)intensional contexts.!

13 Tt means that C occurs in the Composition [C Dy..D,’] for some D;’—f,....D, =B, and the
Composition does not occur in another intensional context of D.

14 Tam grateful to Jan Kuchyiika from Masaryk University of Brno and Bjorn Jespersen from Delft
University of Technology for their valuable comments.
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Fuzzy Type Theory as
a Tool for Linguistic Analysis

Antonin Dvorak and Vilém Novak

1. Introduction

In this contribution we will present Fuzzy type theory (FTT) and some of its ap-
plications, which can be interesting for philosophers and linguists. Fuzzy type
theory is a logical system originally proposed in (Novak, 2005a). It is a gener-
alization of the classical simple type theory developed particularly by (Church,
1940) and (Henkin, 1950). Type theory is a basis of various systems of inten-
sional logics, (see eg. (Fitting, 2006)) which proved to be very useful in the anal-
ysis of natural languages. However, most of these systems do not incorporate
the vagueness phenomenon (cf. (Dvofak & Novak, 2005)). The latter has been
most successfully treated by fuzzy logic which is now a well-developed formal
system (Hajek, 1998; Novak, Perfilieva, & Mockof, 1999) with numerous ap-
plications in mathematics, computer science, industry etc. It turned out that
for the successful applications of ideas of fuzzy logic in linguistics, higher-order
logical system is a necessity. Fuzzy type theory is an extension both of classical
type theory as well as first-order fuzzy logic.

In this contribution we briefly present basic building blocks of fuzzy type
theory. Its syntax is traditional, i.e., formulas can be either provable or non-
provable. However, the semantics of FTT is non-classical, i.e., a constituent of
frame for its language is a set of multiple truth values and so, formulas of type
o (truth value) attain more than two truth degrees. The completeness theorem
with respect to Henkin-style general models holds in FTT. We also discuss the
importance of fuzzy equality. In classical type theory, we can start with a logical
constant Q denoting the identity relation, and define all logical connectives,
quantifiers etc. by means of Q. Similar construction is used in fuzzy type theory
too. Fuzzy equality is then used in the definition of the important concept of the
extensionality of functions.

We will also present some applications of fuzzy type theory. We cannot
go into details, but show how some important notions can be expressed using
formal means of fuzzy type theory. We mainly concentrate on the analysis of
the so called IF-THEN rules and linguistic expressions which occur in them.
Finally we mention a specific deduction method called perception-based logi-
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cal deduction that is a deduction over a set of linguistically characterized fuzzy
IF-THEN rules.

Recently, the use of FTT in the study of generalized quantifiers has been
proposed, see (Novak, 2006). It provides a unified treatment of the so-called
intermediate quantifiers, e.g. a few, a great deal of, most, many, etc.

There is a connection between fuzzy type theory and fuzzy class theory
(FCT) developed in (Béhounek & Cintula, 2005). The goals of both theories,
howeyver, are basically different. The main goal of FCT is to establish precise
grounds for fuzzy mathematics while the main goal of FTT is to develop a pow-
erful formal system for modeling of the semantics of (parts of) natural language.
Note, however, that FTT can serve well for both goals.

2. Fuzzy type theory

For full treatment of FTT we refer particularly to (Novak, 2005a). Here we pre-
sent some important building blocks of it. The purpose is to provide an overall
idea.

Structure of truth values. The structure of truth values is generally supposed
to form one of the following: a complete IMTL ,-algebra (see Esteva & Godo,
2001), standard Lukasiewicz, algebra, LII-algebra or BL-algebra. The most im-
portant for applications in linguistics is L.ukasiewicz, algebra

L=([0,1, v, A® ® A —,0, 1)

where
A = minimum, VvV = maximum,
a®b=0v(at+tb-1), a—>b=1A(1-a+b),
—a=a—>0=1-gq a®b=1Ala-b|,

A(a)z{l ifa=1,

0 otherwise.

Fuzzy equality. Important concept in FTT is that of a fuzzy equality. This is a
fuzzy relation

=MxM—L
which fulfils the following properties:

(i) reflexivity [m=m]=1,
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(ii) symmetry [m=m'=[m"=m],
(iii) ®-transitivity [m=m1®[m'=m"]<[m=m"]

for all m, m', m" € M where [m = m'] denotes a truth value of m = m’.

A special case of fuzzy equality on the algebra of truth values is biresiduation
a<>b=(a—>b)A(b—a),a b e L. This operation is a natural interpretation
of many-valued equivalence. Example of a fuzzy equality on M = R with respect
to standard Lukasiewicz algebra is

[m=nl=1-(1Al|m-nl|), m,ne R

Let F': M, — Mgbe a function and =, = B be fuzzy equalities in the respec-
tive domains M, and Mﬁ . Then F is extensional w.rt = and =B if there is a
natural number ¢ > 1 such that

[m=,m<[F(m) =I3F(m')], m,m'eM,

where the power is taken with respect to ®. If ¢ = 1, we say that F is strongly
extensional. It is weakly extensional if

[m=,ml=1 implies that [F(m) =ﬂF(m’)] =1.
This is equivalent to the condition
Alm =, m'| <[F(m) =BF(m')].

It is easy to prove that each fuzzy equality =  (as a binary function) is strongly
extensional w.r.t. itself and <>. The <> is a fuzzy equality on L strongly exten-
sional w.r.t. itself; A is strongly, and A is weakly extensional w.r.t. <>.

Basic syntactical elements. The Tjpes is a set of types constructed iteratively
from the atomic types € (elements) and o (truth values). Form , denotes a set of
formulas of type @ € Types which is the smallest set satisfying:

(i) Variables x, € Form, and constants ¢, € Form,,
(ii) if B € Formﬁa and A € Form, then (BA) € Formﬁ (application),
(iii) if4 € Formﬁ then Ax, A € Formg, (abstraction).

If A € Form, is a formula of type a € Tjpes then we write 4. Note that vari-
ables, constants and the above defined sequences are formulas (alternatively,
they are often called lambda-terms in type theory).

Formulas of type o (truth value) can be joined by the following connec-
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tives: = (equivalence), v (disjunction), A (conjunction), & (strong conjunc-
tion), V (strong disjunction), = (implication). General (V) and existential
(3) quantifiers are defined as special formulas. For the details about their
definition and semantics — see (Novak, 2005a).

If A € Form, , then A represents a fuzzy set of elements. It can also be un-
derstood as a first-order property of elements of the type «. Similarly, A(O e is
a fuzzy relation (between elements of type o).

Logical axioms. Because of lack of space, we will present logical axioms of
(Lukasiewicz) FTT without more detailed explanation:

(FT/1) AGy =7,) = (g %o = fp Vo)
(FT.2)) (an)(fﬁa X0 =8B X)) = (fﬁa = gga)
(FT122) (fBa = gB(x) = (fl?)(x Yo = &Ba x(x)
(FT;3) (MaBB)Aa = Cﬁ (lambda conversion)
(FTA) (x,=3)=>(0,=2) = (x,=z,))
(FT,5) (x,=y,)=((x,=y) A ,=x,)
(FT,6) (4,=T)=4,
(FT,7) A,= (B,=A4,)
(FT,8) (4,=B)=U(B,=>C)=4,=C))
(FT,9) (=B,=>—-4)=(4,=>B)
(FT;10) A4,vB,=B,Vv A,
(FT,11) A, ~AB,=B,~A,
(FT,12) A, AB,= A4,
(FT13) (A, AB)AC,= A A (B,~C)
(FT;14) (g,,(Ax,) A g,0(—AX)) = (V1,)g,,(Ay,)
(FT,;15) A(4,AB)=AA,AAB,
(FT;16) (Vx, )A4,= B) = (4, = (Vx,)B,)
where x is not free in 4.
(FT117) l(x(oa)(E(ooc)on ya) = Vo a=08

The: a(oa) is a description operator which assigns to a fuzzy set an element from
its kernel (i.e., its interpretation is a the defuzzification operation). E( o)L is a
special constant which represents fuzzy equality.

Inference rules and provability. FTT has two inference rules:

Let A, = A, and B € Form, Then, infer B'where B'comes from B
by replacing one occurrence of A ,, which is not preceded by \, by A, .

(R)

(N) LetAO € Formo. Then inferAAo from A,
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The provability is classical. A theory T is a set of formulas of type o. A formula
AA, is crisp, i.e., its interpretation is either O or 1. There are formulas which are
not crisp.

Semantics. Semantics of FTT is a generalization of the semantics of classical
type theory. Let D be a set of objects and L be a set of truth values. A basic frame
is a system of sets (Ma)aeTypes where M = D is a set of objects, M, = L is a set
of truth values and if y = Ba then My c MﬁMa. A frame is a system

M= (M, =) 1)

acTypes’
where L is the algebra of truth values and = o 1s a fuzzy equality on M and for
o # o, & each function F € Ma is weakly extensional.

A general model is a frame such that every formula 4 , o € Tjpes, has inter-
pretation in it (i.e. there is an element in the corresponding set M, of the frame
that interprets 4,).

Because of lack of space, we will omit precise definition of interpretation of
formulas. The reader may find it in (Novak, 2005a). Let us remark only that the
formula of the form Ax, 45 is in M interpreted as a function assigning to every
m € M, an element from Mj that is obtained as an interpretation of Aﬁ in which
all occurrences of x, are replaced by the corresponding m. For example, inter-
pretation of Ax, A4, is a fuzzy set on M, determined by the property represented
by the formula 4.

Completeness holds with respect to Henkin general models.

Theorem 1 ((Novak, 2005a))
T A, iff T'= A, holds for every theory T and a formula A,

3. Evaluating linguistic expressions

Evaluating linguistic expressions (or, simply, evaluating expressions) are expres-
sions of natural language, for example, small, medium, big, about twenty five,
roughly one hundred, very short, more or less deep, not very tall, roughly warm or
medium hot, quite roughly strong, roughly medium size, and many others. They
form a small but very important part of natural language and they are present
in its everyday use any time. The reason is that people very often need to evalu-
ate phenomena around them. Moreover, they often make important decisions
based on them, learn how to control, and many other activities. Therefore, it
seems to be very important to study them.

All the details about formal theory of evaluating linguistic expressions can
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be found in (Novak, (to appear) 2006). As usual, we distinguish intension
(a property), and extension in a given context of use (i.e., a possible world; see
Fitting, 2006).!

Natural language expressions are, in general, names of intensions. Mathe-
matical representation of an intension is a function defined on a set of contexts
which assigns to each context a fuzzy set of elements. Intension leads to dif-
ferent truth values in various contexts but is invariant with respect to them.

Extension of a natural language expression is a class of elements (i.e., a fuzzy
set) determined by the intension, that fall into meaning of the former in the
given context. It depends on the particular context of use and changes when-
ever the context is changed. For example, the expression “high” is a name of
an intension being a property of some feature of objects, i.e. of their height. Its
meaning can be, e.g., 30 cm when a beetle needs to climb a straw, 30 m for an
electrical pylon, but 4 km or more for a mountain.

The global characteristics of the meaning of pure evaluating expressions’ are
the following:

(i) Extensions are classes of elements taken from nonempty, linearly ordered
and bounded scale which represents context of use of the evaluating expres-
sions. In each context, three distinguished limit points can be determined:
left bound, right bound, and a central point.

(ii) Each of the above limit points is a starting point of some horizon running
towards the next limit point in the sense of the ordering and vanishing
beyond. Thus, three horizons can be distinguished on each scale, namely
left, right and middle one. Each horizon is determined by a reasoning anal-
ogous to that leading to the sorites paradox (Dvorak & Novak, 2005).

(iii) Extension of any evaluating expression is delineated by a specific horizon
resulting from a shift of the horizon due to item (ii). The modification
corresponds to a linguistic hedge and is “small for big truth values” and
“big for small ones”.

(iv) Each scale is vaguely partitioned by the fundamental evaluating trichot-
omy consisting of a pair of antonyms, and a middle member (typically,
“small, medium, big”). Any element of the scale is contained in exten-
sions of at most two neighboring expressions from this trichotomy.

A formal logical theory of evaluating linguistic expressions 7% in FTT is

! We follow the possible world semantics. In the theory of evaluating linguistic expressions, however,
it is more convenient to replace the general term “possible world” by a more apt term “context”.

2 Pure evaluating expression has the structure (linguistic hedge) (atomic evaluating expression),
where linguistic hedges are e.g. very, more or less and atomic evaluating expressions are small, me-
dium and big.



Fuzzy Type Theory as a Tool for Linguistic Analysis 57

constructed on the basis of the above characteristics. The language J£' of 7%
enables us to express formally notions of context, horizon, etc.

We are going to omit details of the formal axiomatic treatment of evaluat-
ing linguistic expressions. Interpretation of basic items of the language J** and
special formulas including extensions of evaluating expressions is schematically
depicted on Fig. 1.

TN N
Y .
,,,,,,,,,,,,,,,,,, M UONG A A
A E‘_\" """" A "('E """""""""""" N
NN —
) ’\ Vg 0 ) t t VR
1 2 2
cMe aSm aB,' CMe cBi aMe

Figure 1: Scheme of the construction of extensions of evaluating expressions

In this picture, LH, MH and RH are interpretations of left, medium and
right horizon, respectively, from item (ii) of the above list. The v;, vg and v, are
interpretations of left bound, central point and right bound, respectively, of the
scale considered in item (i).

In our theory, we do not need to introduce a special elementary type for the
context. Instead, we will assign it a formula w,,  of type aw, i.e., its interpretation
is a function from the set of truth values to arbitrary objects of some type c.
This definition is motivated by the idea that people keep in mind a certain image
of a bounded scale which they modify according to the concrete situation. We
will use a symbol w as a (meta-)type for context.

To deal with elements of the context, we also need to introduce the inverse
formula

wl=ly- Lo(oo)y(AL = ¥ = WI).

By the definition, w™ly is the truth value 7 € Form,, for which y = wt is true (prov-
able) in the degree 1, and which is chosen using the description operator ¢
Clearly, w' € Form,,,.

To see how fuzzy type theory is utilized in the formal treatment of evaluating
expressions, we present as an example formulas for the representation of them.

0(00)"

(i) Sformula: Sm = Av Aw Ax - v(LH w™'x),
(i) M-formula: Me = Av Aw Ax - v(IMH w™'x),
(iii) Bformula: Bi = Av Aw Ax - v(RH w™'x).
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where LH, MH, RH € Form,, are special formulas representing the three
above considered horizons and v € Form, is a linguistic hedge. One can see
that Sm, Me, Bi € Form,, where the type « is given by the chosen context
w € Form,, . It is also important to note that among possible linguistic hedges
we include also the empty hedge, i.e., the evaluating expressions “small, medium,
big” are taken as having the form “empty hedge (atomic expression)”. This ap-
proach enables us to develop a unified formal theory. Further, evaluating predi-
cations are linguistic expressions of the form

Xis (linguistic hedge) {(atomic expression)

where atomic expression is one of “small, medium, big”. Intensions of evalu-
ating predications are formulas of type (oa)(a0) defined by:

Int(X is (linguistic hedge)small) := Aw Ax - Sm,wx,
Int(X is (linguistic hedge)medium) = Aw Ax - Me wx,
Int(X'is (linguistic hedge)big) := Aw Ax - Bi,wx.

Extensions of evaluating predications are given as follows: let w € Form,, be
a context and X be a variable representing objects of type a. Then

Ext, (Xis A)=Int(Xis A)w = Ax - Ev,wx

where Ev Form(p is a general metavariable for intension of an evaluating predi-
cation, and ¢ = (oa)(a0). It means that extension of the evaluating predication
“Xis A is a fuzzy set of elements of type a.

4. IF-THEN rules and perception-based logical deduction

In this section, we outline logical treatment of so-called IF-THEN rules. Its
theory is heavily dependent on the theory of evaluating linguistic expressions
presented in the previous section. Further we show a method called perception-
based logical deduction, which serves as a tool for deduction over IFFTHEN
rules. Its present and perspective applications are numerous.

A fuzzy IF-THEN rule is a linguistic expression of the form

R =IFXis A THEN Yis B (1)

where A, B are evaluating expressions. The linguistic predication ‘X is A’ is
called antecedent and ‘Y is B’ is called consequent.
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Intension of a fuzzy IF-THEN rule ‘R from (1) is the formula
Int(R) = AwAw'- Ax Ay - Ev/ wx = EvCw'y 2)

where x € Form,, y € Formﬁ represent objects of, possibly, different types and
w € Form,, ,w' e Formg  are the corresponding contexts. The symbols EvA Ey€
denote intensions of the predications in the antecedent and consequent, respec-
tively. We will also use a special (meta-)type p = ((oa) ) o for formulas being
intensions of fuzzy IF-THEN rules of the form (2).

A linguistic description is a finite set LD = {Int(R )Jj=1.., m} of (intensions
of) fuzzy IF-THEN rules (1). In linguistic theory, there are important notions of
topic and focus, see (Hajicova, Partee, & Sgall, 1998). Topic of linguistic descrip-
tion is a set of evaluating expressions Topic'P = {EvA | j=1,., m} and focus is
Focus™P = {Ev© | j=1,.., m}. In general, we may take topic and focus as arbitrary
(finite) sets of linguistic expressions.

Note that we can formally represent linguistic description, its topic and fo-
cus using special crisp formulas of FTT as follows:

LD= Azp ~j\ZA(zp = Int(’Rj)),
Topict? = jz,, V Az, = Evih,
m
Focus™P = Az, /\:/1 Az, = E\fic),
Let x € Forma ,V € Formﬁ, we Formao ,w'e Formﬁo . Then the following

scheme is a special inference rule of perception-based logical deduction:

LPerct? wx Ev{*, LD
Eval w'y, Ev{

"pprD -

where ¥, = fop g Ay - Eviwx = EvEw'y), i € {1,..m}, T - Topic*” Ev{" and
T+ Focus* EvC The formula LPercLD wx Ev;! says that Ev/'is a perceptzon of
x in the context w. The formula Eval w'y, Evl means that element Y, is evaluated
by Evl.C (i.e., it has a property expressed by Evl.C in the context w'in a non-zero
truth degree).
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Remark 1

Informal explanation of rp,; p is the following: The linguistic description LD
characterizes linguistically (i.e., imprecisely) some relation between »’s and x’s.
Moreover, we can apply it in all couples of contexts w and w'. If a specific x
in a context w is given then LD should contain rules which characterize all y’s
that might depend on x,. If Ev,.A is a perception of x; (in the context w) then by
rpprp We conclude that y, is evaluated by the corresponding expression Evl.C.
This means that the formula Evl.A wxy = Evl.C w'y represents an evaluation fuzzy
set of those y’s (in the context w') whose dependence on x, can be characterized
by i-th rule from LD. The best evaluated y’s form its kernel and the description
operator 1 takes one of them. In a model, : is interpreted by a special operation
called Defuzzification of Evaluating Expressions (DEE) which selects the worst?
of those best evaluated )’s (for more details see Novak, 2005b).

The rpy,; ; has abundantly many applications in control, decision-making,
classification and others. Wider application of FTT to modeling of complex
human reasoning, however, requires methods of non-monotonic logic (see, e.g.
Bochman, 2001). More details can be found in (Novak & Dvorék, to appear).
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What is a Logical Constant?
The Inference-marker View

Maria J. Frapolli

1. The realm of logic

In this paper I aim to offer a characterization of logical constants taking what
we, speakers, do with this kind of expressions as the point of departure. There
are several definitions of logical constants, but none of them include a compre-
hensive account of their meaning in the broad sense of the word; none of them
propose a picture capable of dealing with the syntactic features, semantic value
and pragmatic role of logical terms. This criticism applies to Tarski’s proposal
(Tarski, 1966) and the long list of sequels that are now known as “invariantist”
theories. “We call a notion ‘logical’”, Tarski says, “if it is invariant under all pos-
sible one-one transformations of the world onto itself” (1966, p. 149).

I will not discuss the different existing definitions of logical constants in any
detail. They, and also the standard criticisms that can be made against them,
are well known to specialists. For specialists and non-specialists alike, it is im-
portant to be aware that, as Warmbrod says in a recent paper, “there is as yet no
settled consensus as to what makes a term a logical constant or even as to which
terms should be recognized as having this status” (Warmbrod, 1999, p. 503).

Warmbrod describes the present situation; I, on the other hand, would like
to analyze some of its sources and offer a proposal. The unsatisfactory situa-
tion concerning logical constants can be attributed to two main causes: (i) the
common understanding of the relations between mathematics and logic, and
(ii) the common understanding of the relations between language and logic.
Contrary to the standard view during the past century, logic and mathematics
are completely disparate enterprises. The most visible point of contact between
the two disciplines is that they are both formal; it remains to be seen whether
“formal” has the same meaning in both cases. It is a fact that modern logic has
become more akin to mathematical theories than to the study of inferential pat-
terns in natural languages. Nonetheless, the legitimate methodology of applying
mathematical tools to the study of logic and languages does not support the
illegitimate identification of the aim of logic with that of mathematics. Undoubt-
edly, modern logic developed during the second half of the XIX century thanks
to the work of mathematicians as Jevons, Boole, Peano and Frege, among oth-
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ers. It evolved from the previous enterprise of applying algebra to the study of
natural language, which was already a revolutionary theoretical enterprise (see
Goldfarb, 1979). But modern logic was born as an independent science when
logicians understood the previous algebraic relations not as relations on sets but
as relations on concepts and conceptual contents. Logic deals with judgeable
contents, with propositions; propositions are the basic elements of arguments,
and even when we use artificial calculi in which propositional structures are rep-
resented at the syntactic level, logical relations are not held between syntactic
items as grammar understands them, but between the contents of some of our
speech acts. Uninterpreted sentences are purely syntactic entities, and purely
syntactic entities are not truth-bearers. Thus, a fortiori, uninterpreted sentences
cannot be what logic, the science of valid arguments, is about. Logical constants
are propositional operators; propositions, statements, thoughts - all these ex-
pressions are equivalent - are the arguments of logical constants, and not the
sentences themselves. Since propositions can be seen as 0-adic predicables, logi-
cal constants can be characterized as predicables on 0-adic predicables, i.e. as
higher-order predicables.

The formality of logic has been often defined by means of adjectives such as
“syncategorematic” or “topic-neutral”, and correctly understood, both charac-
terizations are appropriate. Syncategoremata, as medieval logicians character-
ized them, were expressions that could neither be in subject positions nor in
predicate positions. Indeed, as propositional operators, logical constants can-
not combine as subjects with first-order predicates to form a complete sentence,
and for the same reason they cannot be combined with singular terms as if they
were ordinary verbs. This way of understanding syncategoremata is the syntactic
medieval characterization (see Klima, 2006). There also is a traditional seman-
tic characterization that justifies the description of logic as topic-neutral. The
topic neutrality of logic is not related to the alleged meaninglessness of logical
constants, but to the universal application of the principles of valid reasoning.
Logical constants do have meaning; the point stressed by their topic neutrality
is rather that their arguments can be propositions of any kind, propositions that
deal with any subject matter. I propose to substitute these traditional character-
izations of logical constants - being syncategorematic and topic-neutral - and
by the more precise qualification of being higher order predicables with 0-adic
predicables as arguments, that pick up a shared feature of all expressions with
any logical relevance (see Williams, 1992b).

Nevertheless, syntax does not provide the right demarcation, which is some-
thing that medieval logicians already knew. Interjections, exclamations, adverbs,
and punctuation marks are syncategoremata without being logical constants,
and many of them are also topic-neutral. Logical constants are logically relevant
expressions not because of their syntactic features but because of the role they
play in the general task of drawing inferences. Words such as “if”, “not”, “or”
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and the rest have attracted the interest of logicians because the speakers use
them essentially in their explicit inferential acts. It is their function in ordinary
inferential practices that makes them /ogically interesting terms. Due to all of
this, the project of defining logical constants exclusively by attending to their
syntactic properties is completely misconceived.

2. Inferential meaning and inference-markers

My proposal is to bring logic back to language, its natural home, and to place
the philosophy of logic within the philosophy of language. What logic is cannot
be determined by backing out of the inferential linguistic practices of human
beings, and the same can be said of the task of identifying the features that
make a term a logical constant. The semantics and pragmatics of logical words
provide us with more promising insights than the misguiding clues offered by
the alternative syntactic approach.

What is the semantic value of a logical constant? Generally speaking, the
semantic value of an expression is the component it contributes to the proposi-
tion expressed by the sentences in which the term occurs. Wittgenstein gave
the appropriate answer to the previous question: none. Logical constants are
not names of anything and their semantic function cannot be to add a further
element to the proposition. Naming nothing does not mean having no meaning:
semantic value is a theoretical notion that covers only an aspect of the broader
and more informal term “meaning”. The Wittgensteinian claim is often known
as “logical expressivism”. There is no general agreement as to the credibility of
logical expressivism but, in spite of the theoretical protests, everybody follows it
in practice. Consider the customary way in which one interprets sentences and
formulae in formal semantics. One does it by defining an interpretation that at-
taches objects in the Universe to the individual constants in the formulae, sets
of objects in the Universe to the predicates in the formulae, sets of ordered sets
of objects to the relational expressions. But logical constants are not interpreted
this way. One might retort that logical constants do not need interpretation
precisely because the constancy of their meaning. This is part of the reason,
indeed, but neither the complete answer nor the most relevant part of it. Numer-
als, for instance, are also constants; one already knows their meaning and thus
there is no need to decide, in each new model, which entities would correspond
to them. The entities that can be their values are of the same type as the entities
that are the values of the rest of expressions, i.e. either objects in the Universe
or sets of these objects. The case of logical constants is different. They corre-
spond neither to objects of any kind or to any kind of properties; given a set of
formulae and an interpretation, they help to find the truth-value of the formulae
according to the interpretation without adding new entities to the model. This
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is their specific function and, correctly understood, this is the core of logical
expressivism.

The pragmatic role of logical constants can be easily understood if we con-
sider the following illustration. The proposition expressed by a sentence like (o)
in a standard context,

(o) My daughter is called “Victoria”,

stands in varied inferential relations with other propositions, as for instance,
those expressed by sentences ([3), (y), and (J) in the same context,

(B) Ihave a daughter
(y) Victoria is a girl
(8) Victoria is a human being.

The propositions expressed by (y) and (8) together form the following material
inference:

(I) Victoria is a girl; Victoria is a human being.

The truth of (§) follows from the truth of (y). By asserting (y), one is committed
to assent to (9).

Now, if for some reason one were interested in stressing the commitment
one undertakes to (8) by asserting (y), one would have to display the implicit,
meaning-based, transition from (y) to (8) as a rule of inference, either singular,
as (R1):

(R1) If Victoria is a girl, then Victoria is a human being,
or general, as (R2):
(R2) If'somebody is a girl, then she is a human being.

When the rule of inference is added to the previous material inference, it
becomes a formal inference, as in

(II)  If'Victoria is a girl, then Victoria is a human being; Victoria is
a girl; then Victoria is a human being.

What is the difference between inferences (1) and (II)? They both have the same
conclusion, that Victoria is a human being, and the same premise, that Victo-
ria is a girl. The conditional in (II) is not a further premise, but a principle of
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reasoning. Bolzano, Frege and Peirce already paid attention to this distinction
between premises and principles of reasoning. Premises are claims; they are as-
serted propositions, judgements. Principles of reasoning are rules. Overlooking
the distinction would lead us to Carroll’s paradox. If (I) and (II) share their
premise and their conclusion, in which sense are they different? The answer is ob-
vious: they are different because in (II) the principle of inference used in both is
explicitly displayed. To display it, indicating at the same time that it is a principle
and not a claim, one has to use the appropriate kind of words: logical constants.
In (IT) the words “if ..., then ...” serve to make explicit an inferential connection
between the antecedent and the consequent. When they occur in a sentence, the
sentence in question does not express a proposition but a rule. The same effect
might have been achieved by inserting “therefore” between the premise and the
conclusion. “Therefore” is another logical term. One might think that with this
explanation we are committing the sin that Quine seemed to find at the origin of
modern modal logic, i.e. the sin of confusing use with mention. We are not. The
difference between object language and metalanguage is not as straightforward in
the actual use of natural languages as it is in formal artificial languages. But in any
case, we are talking about propositions, not about sentences, and thus the distinc-
tion does not apply. The arguments of “if ..., then ...”, understood as means of
stressing an inferential relation, are propositions and not sentences, and exactly
the same happens in the case of “therefore”. Now we are in the position of stat-
ing the pragmatic role of logical constants: speakers use these words to display
the structure of an inference. Logical constants are added to material inferences
to exhibit their status as inferences; they are not essential to carry out inferential
movements but their involvement becomes indispensable in order to present in-
ferential connections between propositions as explicit inferences. It is only when
we want to make the presence of an inference patent that they become useful.

In order to make inferential connections explicit an expression does not
only need to have inferential meaning. All concepts have inferential meaning to
some extent; the inferential connections between concepts justify the material
inferences in which they are involved. In this sense the proposal I am putting
forward here, which I will call “the inference-marker view”, goes further than
Gentzen’s and Prawitz’s views. The core of the inference-marker view is not that
the meanings of logical constants can be given as sets of rules, introduction and
elimination rules, but rather that the pragmatic significance of logical constants
is to bring an implicit inference into the open.

It is important to realize that this pragmatic role does not imply that logi-
cal words always indicate valid inferences. The speaker uses logical words to
indicate that, from her point of view, the relevant propositions she is expressing
are somehow inferentially connected. But she might present as an inference one
that is invalid, just because she might be wrong about some aspects of the case
in hand. This doesn’t undermine my general claim about the pragmatic role of
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logical constants. “If”, and the other constants, have exactly the same meaning
when they appear in deductive, inductive or simply invalid inferences. Inductive
and deductive inferences have distinct properties, but they do not affect the
meaning of constants. And the same applies to invalid inferences. The prag-
matic role of “if” is constant across its various uses. “If” means the same when
it appears in an instance of the fallacy of affirming the consequent as when it
appears in an instance of our reliable Modus Ponens. It is because its meaning
doesn’t change that we classify the former, unlike the latter, as fallacious.

All logical words share the same general pragmatic role, but different logical
words have different specific inferential meanings. In each case the rules that gov-
ern the relevant inferential movements depend on the particular meaning of the
logical constants actually used. Thus, “if”, “not” and “or” codify different inferen-
tial entitlements, that in formal calculi are represented by different sets of rules of
inference that disclose the circumstances and consequences of their use.

I will propose a general definition of logical constants following the lines
already mentioned, a definition that include their syntactic status, their seman-
tic characterization and their pragmatic role. However, unlike many proposals
that take syntax as the point of departure, my discussion of the subject will start
from pragmatics. I take what we do with words, with logical words in this case,
as the foundation level.

3. Syntax, semantic, and pragmatics of logical words

The definition:

[DEF] Logical constants are higher-order predicables that have O-adic
predicables as arguments. They don’t name any kind of entity but
rather are natural language devices for making inferential relations
among concepts and propositional contents explicit.

DEEF involves a syntactic claim, that logical constants are higher-order; a
semantic claim, that they do not name; and a pragmatic claim, that by using
them a speaker shows the presence of an inference. The semantic claim - logi-
cal expressivism - has been defended by John Buridan and Albert of Saxony in
the Middle Ages (see Klima, 2006), and by Wittgenstein (1922), Austin (1962)
and Brandom (1994) in the XX™ century. Ramsey (1928), Ryle (1956) and
Brandom (1994) supported the pragmatic view, that I have called “the infer-
ence-marker view”.

Being higher-order - the syntactic claim - is only one of the necessary con-
ditions for being a logical constant. And the same happens with the semantic
aspect. In language, there are many different expressions that, strictly speak-
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ing, don’t name anything, and shouldn’t be catalogued as logical constants for
this reason alone. But as logic is the science of inferences, logical constants
are essentially inference-markers. The pragmatic role explains the semantic and
syntactic features: logical constants are not components of the contents of infer-
ences but have these propositions as arguments.

A O-adic predicable is a predicable with 0 argument places, i.e. a proposi-
tion. That logical words are higher order predicables that have propositions
as arguments should be obvious if one recalls that the basic notion of logic is
validity, that validity is a property of inferences, and that inferences, considered
in an objective sense as the result of acts of inferring, are sets of propositions.
There is another way in which inferences can be understood, i. €. as movements,
as transitions from sets of propositions to a proposition. The notion of inference
has a dynamic sense, a sense that supports the static view of inferences as sets
of propositions. This dynamic sense has been recently stressed by Dubucs and
Marion (2003), by Martin-Lof (1996), and by Sundholm, among others. It is
because an inference is a movement that genuine logical constants have an as-
pect of their significance that is dynamic. They show inferential bridges between
concepts and propositions.

An immediate objection to my definition is that, although it fits sentential
connectives well, it ignores identity and first order quantifiers. That first order
identity is not a logical constant is nowadays an accepted point. First order
quantifiers, on the other way, are generally considered as the logical constants
that characterize first order calculi. The challenge that first order quantifiers
pose to my view is not that they are first order (or that we call them “first order”)
for quantifiers are higher order functions. The difficulty here is that these quanti-
fiers have n-adic predicables (n > 0), and not propositions (0-adic predicables),
as arguments. A possible way out is provided by the fact that DEF can have two
readings, one weaker than the other. They are the following,

[DEF] Logical constants are higher-order predicables that may admit
0-adic predicables among their arguments. They don’t name any
kind of entity but rather are natural language devices for making
explicit inferential relations among concepts and propositional
contents.

weak

|[DEF] Logical constants are higher-order predicables whose arguments
are 0-adic predicables. They don’t name any kind of entity but
rather are natural language devices for making explicit inferential

relations among concepts and propositional contents.

strong

[DEF], .« predicates logical constanthood of types, while [DEF]Sm)ng
predicates it of tokens. Under the former, a type, say a quantifier, is a logi-
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cal constant if, among other characteristics, it has tokens that are functions of
0-adic predicables. Propositional quantification would be an obvious case that
would provide quantifiers with the required feature. In any case, quantifiers are
not an homogeneous kind, and it is reasonable to assume that different types
with different functions may be distinguished. Under the stronger definition,
what is classified as a logical constant is a token, i. e., a particular instance of a
type together with its particular aspects. If one selects exclusively [DEF]Smng,
it makes no sense asking whether quantifiers or any other kind of expression are
or are not logical constants or not.

Fortunately, it is not necessary to choose one of the two options and reject
the other. We can assume the charitable position of classifying types as logical
constants in a weak sense if, and only if, they have tokens that are so in a strong
sense.

DEF assembles three aspects that are individually necessary and jointly suf-
ficient for being a logical constant.

My definition rules out:

(i) First-order predicables, and hence it discards first-order identity and
membership as logical constants
(ii) Predicate-formers such as some uses of negation, conjunction and dis-
junction, higher-order identity and the reflexivity operator
(iii) Monadic sentential operators that act as circumstance-shifting opera-
tors, such as modal, epistemic and temporal operators.
(iv) Monadic sentence-formers, such as monadic quantifiers

Nevertheless,

(v) DEF doesn’t imply that first-order identity, conjunction and disjunction
should be removed from standard calculi. They shouldn’t. They all have
jobs to perform there.

(vi) DEF doesn’t imply that modal, epistemic and tensed logics shouldn’t
be considered as logics. They should, although they all include at least
two sets of constants, genuine logical constants, which earn for them
the title “logic”, and specific constants that make them modal, epistemic
or fensed logics, in each case.

(vii) DEF doesn’t imply that quantifiers are not logical constants. Rather, it
distinguishes different kinds of quantifiers. Monadic quantifiers don’t
act as inference-markers, but binary quantifiers usually do. This does
not mean any rejection of Frege’s (1884) account. Frege rightly under-
stood the nature of numerical expressions as higher-order concepts,
and correctly defined existence as an expression of quantity. Numeric
expressions and existence are monadic higher-order functions whose
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arguments are concepts. They indicate sizes of concept’s extensions.
Nevertheless, they don’t act as markers of inferences and so they are
not logical constants.

(viii) My view does not suggest any criticism of Mostowski’s insights that
monadic quantifiers help us to construe propositions out of proposi-
tional functions, or that logical quantifiers cannot be used to single out
individuals. Both theses are correct, but none of them define logical
constanthood.

Points (i)-(viii) require explanation, although this is a task that I will not at-
tempt here. A single paper of the length of the present one would not be enough
for such a task that would eventually involve a revision of all terms that have
ever been proposed as logical. Nevertheless, some comments would help. Point
(i) is hardly controversial: there are many authors who do not count first order
identity or membership among logical constants (see, for instance, Peacocke,
1976 and Warmbrod, 1999). Point (ii) refers to a relevant issue, that some uses
of the words that are commonly accepted as logical terms actually have a com-
binatorial function. Some uses of negation, conjunction and disjunction have
predicative expressions as arguments. When this happens, their function is help-
ing to build complex concepts out of simple ones. Complex concepts such as
“unhappy”, “honest politician”, “married woman”, “homeless” are composed of
more basic concepts by means of negation and conjunction. Although nowadays
this function of concept construction seems to have been forgotten, medieval
logicians were perfectly aware of it (see Klima, 2006). Point (iii) says that some
monadic sentential functions are circumstance-shifting operators, i.e. operators
that, although don’t contribute a component to the proposition expressed by
the sentence in which they occur, are relevant to the task of evaluating the
propositions that act as their arguments. Point (iv) points to a significant feature
of some quantifiers. All of us consider the Fregean treatment of existence in
(Frege, 1884) as the first step towards the correct understanding of quantifiers.
In § 53, Frege says: “In this respect existence is analogous to number. Affirma-
tion of existence is in fact nothing but denial of the number nought”. Although
this is accurate in relation to existence, it is not in relation to generality. It
is relevant here to acknowledge that quantifiers may be monadic higher-order
operators or binary higher order operators. The monadic existential quantifier
indicates, as Frege saw, that the extension of the concept that is its argument is
not empty. But the monadic universal quantifier has a slightly different meaning:
it indicates the scope of the concept that is its argument. In natural languages,
both quantifiers standardly are binary operators. Frege also saw this: “It must be
remarked that the words ‘all’, ‘any’, ‘no’, ‘some’ are prefixed to concept-words.
In universal and particular affirmative and negative sentences, we are express-
ing relations between concepts, we use these words to indicate the special kind
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of relation. They are, thus, logically speaking, not to be more closely associated
with the concept-words that follow them, but are to be related to the sentence as
a whole.” (Frege, 1892, p. 48) When they are binary operators, their meaning is
dynamic and they indicate an inferential connection between the two concepts
that are their arguments. From the quoted text it follows that Frege thought that
both universal and existential quantifiers have uses in which they are binary.
I totally agree. In artificial languages we are free to define the status of the op-
erators that we introduce, but in natural languages we are not. These operators,
as the rest of our expressions, are supported by the tasks the speakers use them
for, and standardly the existential quantifier is used as a monadic operator to
express the non-emptiness of an extension, and the universal quantifier is used
as a binary operator to express a principle of reasoning.

All this is still very vague, but the main idea under the inference-marker view,
that I am proposing in this paper should be clear by now. To sum up, logical con-
stanthood is a functional concept. It applies to tokens of expressions depending
on the role they perform. The central notion of logic is not truth but truth-pres-
ervation, and truth-preservation, i.e., validity, is a property of arguments, i.e. of
sets of propositions. This is the standard explanation, and the correct one. My
proposal takes it seriously as a guide into the inquiry about logical constants.
And the result is that, in a strong sense, only some uses of negation, disjunction,
conditional and quantifiers are genuine logical constants, their types being logi-
cal constants in a weak sense. In addition there are several kinds of expressions
that play a role in the practice of drawing inferences, although their function
is not presenting inferences as such. These kinds are typically (i) operators on
predicative expressions that help forming complex predicables out of simpler
ones (some uses of negation, conjunction, and disjunction), (ii) propositional
operators, both monadic and binary, and among them, (ii. a) circumstance-
shifting operators (modal and tense operators, for instance), and (iii) binary
first order identity and membership. All these kinds deserve the logician’s atten-
tion, although for different reasons.

If this conclusion sounds too unpalatable there is still the possibility of relax-
ing the requirements and considering any operator with a relevant role in the
general task of drawing inferences as a logical constants. This would allow add-
ing the expressions described in (i), (ii) and (iii). Still, the perspective should
be pragmatic and the characterization should attend the task performed rather
than the syntactic category. This broader characterization would be highly im-
precise, and probably too liberal, but it would permit welcome back on board
the familiar set of words. I don’t object as far as we remain aware that, among
the hospitable set, several well-defined types of operators can be distinguished.

I prefer the stronger characterization. In my view, negation and conditional-
ity, both singular and general, constitute the core of our logical apparatus. And
correctly understood, this view deeply respects tradition. It is faithful to Frege,
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Ramsey, and Peirce, to Wittgenstein, Prior, and Williams, to Sellars and Bran-
dom, and in general to all those who consider what we do with words as the
basic level of analysis.
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“Realistic” Belief Dynamics*

Brian Hill

For several years now, the “realism” of the classical representations of beliefs
proposed by logicians, philosophers, and economists has been the source of
anxiety and debate. The realism of the models of doxastic actions which rely on
such representations, such as those models proposed by decision theory, choice
theory, and, more recently, belief revision, has given rise to similar worries. The
purpose of this paper is to propose and motivate a framework which supports
a more realistic model of doxastic states, of the changes they undergo, and of
the role they play in action and decision. This framework shall be developed
and applied to the case of belief revision, a paradigm example of an operation
involving beliefs, and a field which has recently seen some concern about the
realism of traditional approaches.

In the first part of the paper, the general framework shall be developed in
two stages - firstly a representation of the instantaneous state shall be proposed
and motivated, then an operation capturing the dynamics of this state shall be
defined. In the second part of the paper, it shall be shown that the framework
yields a model of belief revision which, firstly, recovers the Gérdenfors postu-
lates as applying in particular circumstances; and secondly, can accommodate
iterated revisions, recovering several proposed revision operators for iterated
revisions as special cases.

1. General framework

1.1 Interpreted Algebras

All systems purporting to represent beliefs or operations involving them as-
sume an underlying language, with its own logic (for the most part, the classical
consequence relation). The fundamental observation motivating the proposed
model is that, between any two moments, the languages which are effective or “in
play” at these moments - the languages in which the beliefs active at these mo-

* This paper summarises the content of a presentation given at Logica in June 2006. Most of the
content had been presented in April 2006 at the Philform seminar at the IHPST in Paris. The au-
thor would like to thank both audiences for their comments.
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ments are couched - may differ. A similar point seems to hold for the logics of
these languages, in so far as they are comparable. Let us call the combination of
language and logic effective at a particular moment, the local logical structure at
that moment. The model developed shall be more “realistic” or “sophisticated”
in that it pays explicit attention to and indeed represents formally the local logi-
cal structures effective at particular moments, as well as the changes in these
structures as new information comes into the fray.

Indeed, just the fact of explicitly representing the language and logical struc-
ture which are effective at a given moment allows one to deal with several of the
most important weaknesses of traditional models of belief. On the one hand,
traditional notions of belief generally imply that, if an agent (actively or ex-
plicitly) believes that he has a meeting at 10.00, then he also believes that he
has a meeting at 10.00 and there are infinitely many primes. This unintuitive
consequence of their models is avoided once one introduces the notion of a
sentence or an issue being in play: the reason that the agent does not appear
to have the latter belief is that, the whole question of the number of primes - the
sentence “there are infinitely many primes”, if you prefer - is out of play for him
at that moment. This notion of ‘in play’, close to Fagin and Halpern’s ‘aware-
ness’ (Fagin and Halpern, 1988), cannot be captured by traditional models and
needs some sort of syntactic apparatus distinguishing those sentences which are
in play from those which are not. By modelling explicitly the set of sentences in
play at a given moment - the /ocal language (at that moment) - one avoids these
troublesome cases of logical omniscience.

On the other hand, traditional notions of belief, which generally take a fixed
logical structure, and thus a fixed consequence relation, generally have prob-
lems with subjects who apparently fail to recognise logical or intensional equiva-
lence. They cannot represent an agent who accepts that he needs to go to the
eyedoctor without accepting that he need go to the ophthalmologist, since the
two sentences are (intensionally) equivalent. However, as soon as one considers
not only the language, but also the logical structure on it as local, so that the
logical relationships between sentences hold only in so far as they figure in that
local logical structure at that moment, one can account for examples of this sort:
the local logical structure relevant at such moments does not necessarily respect
the global logical structure pertaining to some global language.

Thus, by taking the language and its associated logical structure as local,
one avoids in one step a range of ‘logical omniscience’ problems which have
previously needed different strategies, as in Fagin and Halpern (1988). It goes
without saying that the idea that an agent can only operate in a fragment of his
total linguistic range at any given moment of time is a simple, important, but
particularly intuitive aspect of the finiteness of human thought, and is certainly
tame compared to bolder models of human limitations which postulate a multi-
plicity of ‘minds’ or a particular type of mental architecture.
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Interpreted algebras will be used to model formally the local logical struc-
ture effective at a given moment (for the classical propositional case considered
here); they are defined as follows.

Definition 1 (Interpreted Algebra). An interpreted algebra B is a triple (B B,q),
where B;is the free Boolean algebra generated by a set I (the interpreting alge-
bra)," Bis a Boolean algebra (the base algebra), and q: B; — Bis a surjective
Boolean homomorphism.

An element of B is a pair (¢,q(¢)), ¢ € Bp; they shall be referred to by
the appropriate elements of the interpreting algebra, and often be called “sen-
tences”. The consequence relation = is defined on elements in the natural way:

¢ = piff g(¢) < q(w).

The interpreting algebra models the local language effective at the moment
in question, with I being the set of /ocally atomic or primitive sentences in play
at that moment. It is, so to speak, the “syntax” of the local logical structure.

The base algebra is the local logic on this language. It is, so to speak, the
“semantics” of the local logical structure. Just as the elements of the interpret-
ing algebra may be thought of as the sentences of the local logical structure, the
elements of the base algebra may be thought of as the (local) propositions. Ac-
cordingly, ¢ is the map taking sentences to propositions, and may be thought of
as the valuation of the sentences of the language.> Elements of the interpreted
algebra consist of a sentence and the proposition which it expresses; the con-
sequence relation on elements arises from relations between the propositions
they express.

Intuitively, the local logical structure effective at a given moment is finite.
The use of a Boolean algebra to model the local language allows one to circum-
vent the apparent contradiction between the finiteness of the language and the
fact that recursion with Boolean operators yields an infinite set of sentences.
The purported finiteness of the local language has two aspects: firstly, there a
finite number of (locally) primitive sentences in play, but furthermore there are
effectively only a finite number of linguistic entities which can be formed from
them, since one naturally discounts such differences as those between ‘4 and A
and A and A’ and ‘A’. The former aspect is captured by using interpreting alge-
bras with finite /, the latter by the use of Boolean algebras, which automatically

I A Boolean algebra is a distributed complemented lattice; the order will be written as <, meet,
join, complementation and residuation as A, V, =, —, the top and bottom elements as T and L.
The free Boolean algebra generated by a set X shall be noted as By for the rest of the paper; details
on this and the other notions used in this paper may be found in Koppelberg (1989).

2 The fact that it is a Boolean homomorphism guarantees that the ordinary conditions on valua-
tions are satisfied.
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disregard the sort of differences mentioned.® The interpreting algebra will thus
generally be assumed to be finite.

It follows that the base algebra will be finite, and thus atomic.* The atoms
of the base algebra can be thought of as “states” or “small worlds” - worlds
in the sense that every sentence of the local language receives a valuation in
each world (thanks to ¢); small in the sense that only the sentences of the lo-
cal language receive valuations in these worlds. It is of crucial importance that
the expression in terms of Boolean algebras favoured here does not imply any
rejection of the dominant “possible worlds”, or as it might be called, exten-
sional view: indeed, assuming the algebras are atomic, the two are technically
equivalent. If the algebraic perspective is favoured, it is only because it proves
more fruitful for considering the relationship with the local language, and for
modelling the dynamics of local logical structures in general. Recourse shall be
made, at times, to the extensional view, since it is, for many, simpler and more
intuitive.

Finally, the assumption that the homomorphism ¢ is surjective implies that
there are no two “small worlds” which cannot be distinguished by sentences of
the local language. This assumption follows from the idea that the local logical
structure incorporates all and only the sentences in play at a given moment with
all and only the logical structure on them at that moment. If one employed inter-
preted algebra with a non surjective homomorphism, then the logical structure
would contain distinctions between elements of the base algebra (local proposi-
tions) which are beyond the linguistic resources in play, thus contravening the
intuition behind local logical structures.

Finally, here are two examples of basic, but important, sorts of interpreted
algebra.

Example 1. The point interpreted algebra for the sentence ¢, By = (B{ e 1,9),
where 1 is the two element Boolean algebra ({T,L}),and g :p — T.

The simple interpreted algebra for the sentence ¢, B, =(B ( ¢5},2,q), where 2
is the four element Boolean algebra ({ T, L,x,x"}), and g :¢p — x.

Point algebras and simple algebras are the two basic possibilities for repre-
senting a (consistent) local logical structure which has essentially one sentence
(¢) in play (that is, there is the one sentence and those which can be formed

3 Apparent objections to this choice of model will generally be defused once one realises that no
restrictions are put on the set / of primitive sentences. See Hill (2006b) for further discussion.

4 Standard terminology is employed here: an atom of a Boolean algebra is an element ¢ < B, such
that, for all x € B, if L < x < g, then either x = L or x = a. Note furthermore that the assumption
of finiteness is not required for any of the definitions or results in this paper; the weaker assumption
that B is atomic is sufficient.

5 Recall (footnote 2) that B{(ﬁ} is the free Boolean algebra generated by {¢}.
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from it with Boolean connectives). In the point algebra, this sentence is ac-
cepted as a (local) logical truth in the language (in terms of small worlds, there
is one world, where ¢ holds, —1¢ holding at no world in this interpreted algebra).
The simple algebra admits the “possibility” that the sentence may be true as well
as false (there are two worlds, one where ¢ holds, the other where —¢ holds).

1.2 Fusion

Investment in a model which captures the logical imperfectness of an agent’s in-
stantaneous belief state seems worthless if it is not accompanied by an account
of how this state can change. In terms of the framework proposed here, a pro-
posed model of the local logical structure at particular moments is of little use
unless it can also model the changes in the local logical structure which occur
from one moment to the next. In this section, a fizsion operation shall be defined
which will model the change in the local logical structure as new information
comes into play.

The changes to local logical structures which shall be dealt with here are
those brought about by the incoming information. Typically, in models of belief
(or knowledge) and their changes, new information comes in the form of a
sentence (or set of sentences) of the language.® However, no global or overarch-
ing language is assumed in the current framework; indeed, given that the only
language present is the local language of the current local logical structure, the
whole problem is how to deal with sentences which do not necessarily belong
to this language. It is therefore necessary to endow the incoming information
with its own fragment of language, with the sort of basic logical structure which
always accompanies such fragments of language. To put it another way, the new
information comes in the form of (at least) a local language with a local logic.
It shall thus be modelled using interpreted algebras.’

The flexibility of the notion of interpreted algebra permits it to capture the
diverse, more or less complicated, forms which incoming information might
take. At one end of the spectrum, rich local languages (large Bj) with interest-
ing logical structures (Band ¢) can accurately model an input which does not
consist of a simple sentence, but comprises a complex of diverse information,
about how such a sentence comes into play, how it was learnt, what justifies it,
and so on. At the other end of the spectrum, the simple traditional cases of a
single sentence entering into play can be captured using simple or point inter-
preted algebras (Example 1).

% This is the case not only in belief revision, but equally in epistemic dynamic logic, or in typical
Bayesian update theory.

7 The current discussion concerns only the general framework; in Section 2.1, a richer model of
new information, obtained by adding extra structure to the interpreted algebra, shall be proposed.
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However, given that no overarching language is assumed, but only the lo-
cal languages contained in the individual interpreted algebras, there is a priori
no way of identifying sentences belonging to different interpreted algebra, and
in particular sentences belonging to the algebra representing the current local
logical structure and the one representing the new information. To represent
the fact that the new information may involve sentences which already belong
to the current local logical structure, supplementary technical apparatus is thus
required. The identification of sentences between different interpreted algebras
shall be represented using an appropriate relation, =, called identification. For
the purposes of this paper, identification relations can be considered to be Bool-
ean congruence relations on the elements of the interpreted algebra, that is,
equivalence relations which conserve Boolean structure.® In subsequent discus-
sion, an identification relation = shall be assumed.

The question of changes in the local logical structure in the face of new in-
formation now becomes that of proposing an operation taking two interpreted
algebras, with an identification of sentences between them, and yielding an in-
terpreted algebra which respects the identification of the sentences. The operation
of fusion of interpreted algebras does just this. It can be defined from two simple
operations on interpreted algebras.

The first is the operation of free product on interpreted algebras, ®, which is
obtained by taking the free product of the interpreting algebras, the free product
of the base algebras, and the canonical homomorphism between them.? At the
level of languages, the new local language obtained is the closure under Boolean
operations of the disjoint union of the two initial local languages. On the seman-
tic side, the set of small worlds or states in the resulting interpreted algebra is the
cartesian product of the sets of small worlds or states of the initial algebras, and
the valuation on these worlds (the homomorphism ¢) is the naturally derived
valuation; one might think of the free product as “combining” small worlds, to
give “enriched” small worlds. The second operation is the operation of quotient
by the identification relation, obtained by taking the quotient of the interpret-
ing algebra, and the induced quotient of the base algebra, with the canonical
homomorphism between them. In terms of local languages, the quotient opera-
tion identifies or renders identical the sentences which were =-equivalent in the
initial local language. In terms of the local logic, the propositions correspond-
ing to sentences which are =-equivalent in the initial local logical structure are
identified in the resultant structure. Equivalently, quotienting on the semantic
level removes the small worlds which are witness to differences between any pair
of =-equivalent sentences ¢ and 1; that is, worlds where the valuations of ¢ and
w differ. The operation of fissing two interpreted algebra is defined as follows.

§ For full technical details on this and other aspects, see Hill (2006a, 2006b).
° For more details on the product of Boolean algebras, see Koppelberg (1989).
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Definition 2 (Fusion *). Given two interpreted algebras B; and B,, with an
identification relation = between them, the fusion of the two algebras, B, * By,
is defined as the quotient of the free product of the two algebras by the rela-
tion =.

This operation models the change in the local logical structure under new in-
coming information: both the original local logical structure and the new infor-
mation are modelled by interpreted algebra; the resulting local logical structure
is the resulting interpreted algebra. This model is intuitive: in fusing the new
information (with its fragment of language) with the existing logical structure,
the “sum” of the two languages is taken (free product), and then appropriate
sentences figuring in the different languages are identified (the quotient). Given
that the operation to be modelled is that of “merging” or “combining” two frag-
ments of language, one would expect it to be commutative: no priority should be
given to one over the other.!? The operation * has this property.

Two examples shall serve to illustrate this sort of operation.

Example 2. For ¢ in B, the fusions with the relevant simple and point algebras

(Example 1) are as follows:

Simple algebra B * B¢ is isomorphic to B;

Point algebra B * B¢p is isomorphic to (B, BA¢), "), where B/(¢) is the
quotient of B by the smallest congruence relation such that ¢ = T, and
q' the composition of ¢ with the quotient homomorphism.

The first example illustrates that the fact of bringing into play a sentence
which is already in play, in such a way that no extra logical structure is allocated
to it, does not alter the algebra. The second example concerns fusion with a
sentence already in play, but such that the sentence, in so far as it figures as
new information, is endowed with extra logical structure: namely, it is taken to
be equivalent to the true (of the local language). This leads to a change in the
local logical structure to accommodate this information: the fusion results in a
logical structure with the same local language, but such that the sentence is now
equivalent to the true (or alternatively true in all small worlds).

This second example is interesting because, put in terms of small worlds, it
essentially says that fusion with B¢p does not change the language but removes
all the small possible worlds, or states, where ¢ is false. This sort of operation,
which plays an important role in the literature on public announcement and
dynamic epistemic logic (Gerbrandy and Groeneveld, 1997), is thus reproduced
as a special case in the framework proposed here. More generally still, it is not

10 Commutativity is expected only for the logicolinguistic structures in which beliefs and new infor-
mation are couched. It will not be desired for full models of beliefs and new information, and shall
not be present in the model proposed in Section 2.1.
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difficult to see that the model of epistemic programs proposed by Baltag and
Moss (2004) is based on the sort of fusion operation proposed here.!!

A model has been proposed both of the local logical structure effective at a
particular moment - interpreted algebras - and of the dynamics of this struc-
ture - the fusion operation. This technical apparatus is abstract, and thus can
be applied to several different questions in several different fields; in each field,
the basic notions assume different philosophical interpretations. In the next
section, the power of the framework will be illustrated by using it to develop a
realistic model of belief revision.

2. Belief revision

Models of belief revision typically consist of a model of the belief state, a repre-
sentation of new information with which the state is to be revised, and a revision
operation representing the revision of the former by the latter, which satisfies
a certain number of belief revision postulates, such as the so-called Gérden-
fors postulates (Gardenfors, 1988). In the original AGM paradigm, the state of
belief is taken to be a set of sentences (of a given language L) closed under a
(given) logical consequence relation, and the new information consists of a sen-
tence of this language.!? A typical model of belief revision, proposed by Grove
(1988), uses a Grove order < on the set S of maximal consistent sets (“possible
worlds”) of a language L, that is, a reflexive order which is connected, transitive
and finitarily stoppered.'? In this model, the set of beliefs is the set of sentences
true in the <-minimal worlds, and a sentence v is believed after revision by ¢ if
it is true in all the <-minimal worlds satisfying ¢.'*

Two further questions which have entered into the fray since the original
AGM work are the question of iterated belief and that of realism. On the one
hand, it is desirable to have a model such that, whatever results from the revi-

' Leaving aside the locality of languages, which is not present in Baltag’s paper, and modalities,
which are not (yet) present in the basic framework proposed here, Baltag’s update product and the
operation of fusion defined above turn out to be fechnically similar. Indeed, since this paper was
presented, Baltag has applied his system to belief revision, in a way close to that presented in Sec-
tion 2 (Baltag and Smets, 2006). Although there is little space to comment here, comparison with
his paper brings out more clearly the difference in philosophical viewpoint: for example, Baltag et al
show no interest in the question of realism, in belief revision postulates, and do not have equivalents
of Theorem 1 or 2 below.

12 In AGM theory, the operation of contraction - removal of a belief - is taken as primitive. Here
only the operation of revision is considered. For the relationship between them, see Gérdenfors
(1988).

13 < is finitarily stoppered if and only if, for all ¢ € L, |¢| # @ implies that {x € |¢| | x X y,
Vye |g|l=#0,where |¢|={x € S|x = ¢}. See Grove (1988) for details.

4 For the uninitiated, it may be useful to compare this model with Lewis’ semantics for counterfac-
tuals; for a detailed comparison, see Grove (1988).
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sion of belief, it can itself be revised in the face of subsequent information;
famously, the traditional AGM models, and indeed the Grove model described
above, do not satisfy this condition. There have however been proposals for
modelling iterated revision, and indeed a variety of postulates which one might
want iterated revisions to satisfy; see Rott (2003) for some examples. On the
other hand, concern has surfaced about the realism of the proposed theories of
belief revision, Hansson (2003) and Rott (2004) being just two examples where
such worries have been expressed.

In the following section, a model of belief revision shall be proposed. This
model is realistic in its conception, to the extent that it is based on the local logi-
cal structures introduced above, and inherits from these structures the ability to
avoid some of the problems described above. Furthermore, the model satisfies
the Girdenfors postulates in appropriate cases, and models iterated revision
in such a way as to recover several iterated revision operations proposed in the
literature as special cases. This will be interpreted as a sign that the model does
not make the sort of idealistic assumptions that force other models to deal only
with such special cases."

2.1 A model of belief revision

In Section 1.1, a model of the local logical structure effective at a particular
moment was proposed, in the form of what was called interpreted algebra. The
locality of this language and of its logic respond well to certain limits in real
agents’ belief states. The basic proposal for modelling the belief state of an
individual is to employ traditional models of beliefs, but, instead of using some
fixed language and logical structure, considering the beliefs of the agent at a
particular moment as couched in a local logical structure which is effective at
that moment. This is, so to speak, a model of the beliefs of which the agent is
“aware”, in the agent’s own language, at a particular moment.

The simplest model of beliefs would be as a set of sentences closed un-
der logical consequence - that is, the logical consequence of the local logi-
cal structure which is operative at the appropriate moment.'® However, it has
been suggested that correct representations of the belief states of an individual
should include information not only about his current beliefs, but also about
how he would revise them, or, alternatively, about how “entrenched” they are

15 The model is also realistic in the stronger sense that it permits an analysis of counterexamples
to Gérdenfors postulates, such as that proposed by Rott (2004), which makes clear in exactly what
sense the examples do not deal with the special cases to which the postulates are to apply. See Hill
(2006b) for more details.

16 This model implies that the agent is locally logically omniscient. However, this seems a generally
correct assumption: if an agent believes ‘A’, ‘if A, then B’, recognises these beliefs as such, and ‘B’ is
in play, then it would seem that he believes ‘B’.
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(Darwiche and Pearl, 1997). Such a model of belief states shall be employed. It
consists in adding a Grove order - representing not only the agent’s beliefs but
potential revisions of these beliefs - to an interpreted algebra - representing the
local logical structure in play at the moment in question. The resulting structure
is called an ordered algebra.

Definition 3 (Ordered algebra). An ordered algebra is a pair (B,<) where
B = (B;,B,g) is an interpreted algebra and < is a reflexive order on the atoms
of B which is connected, transitive and finitarily stoppered.

Example 3. The point ordered algebra for sentence ¢, (B¢p, $¢p) has, for inter-
preted algebra, the point algebra for ¢, and, for order, the only possible one.

The simple ordered algebra for sentence ¢, (By, <), has, for interpreted
algebra, the simple algebra for ¢, and, for order, the order favouring

@:q(d) = q(—).

As a point of terminology, we shall say that the centre of an ordered algebra
(B,X) is the set of elements of B true in all the small worlds minimal with
respect to <. An element of the centre is a generator if it is true only in the
=<-minimal small worlds.!” Finally, an element is a local tautology if it is true in
all the small worlds.

Ordered algebras provide a particularly rich representation of the agent’s
doxastic state at a given moment. For a sentence ¢, ordered algebras can cap-
ture two senses in which it may be “believed”. It might in the centre of the
algebra; furthermore, it may be a local tautology. The first case is what are
called “beliefs” in Grove’s model (Girdenfors, 1988); this set of “beliefs” may
be revised if new information forces one to move to worlds where not all of them
hold. The second case corresponds what have been called “doxastic commit-
ments” or “irrevocable beliefs” (Segerberg, 1998); no revision of such beliefs is
admissible, since there is no world (of the ordered algebra) where they do not
hold. However, whereas in the literature, where a fixed language and notion of
logical consequence are presupposed, “irrevocable” beliefs end up being just
the tautologies of this language, in the framework proposed here, where the
language and the logic are local, it is not necessary that the /ocal tautologies are
tautologies of some fixed language (see Section 1.1); in this sense, the believer is
not modelled as omniscient. Moreover, as opposed to most traditional models,
not only the centre of the ordered algebra modelling the agent’s belief state, but
also the local tautologies, may change in time. They are thus to be understood
as those opinions which the agent cannot envisage giving up at that particular
moment - his local commitments, if you like. The sentences in the centre are the

17" Since ¢ is surjective, there is always a generator. This is natural in the finite case appropriate
here.
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most preferred sentences amongst those which are in play - his (explicit, instan-
taneous) beliefs. For an ordered algebra representing the agent’s belief state, the
centre is thus the set of beliefs.

What allows this departure from the tradition is the fact that ¢) may not be be-
lieved in two general senses. Firstly, it can not figure in the local algebra at all: it
can be out of play. It is this possibility that is not permitted by previous theories,
and it is by changing the sentences which are in and out of play that the beliefs
or commitments of the agent can change in ways in which previous models can-
not capture. Secondly, ¢ may be in play for the agent, true in some small worlds,
but not all of the <-minimal ones. The ordinary method for revising beliefs in
Grove models applies to such sentences: the set of beliefs after revision by ¢
are those sentences true in all <-minimal small worlds where ¢. The ordered
algebra thus represents the agent’s opinion on how he would revise his beliefs by
sentences which are in play for him at that moment; that is, it provides envisaged
revision. However, this is not a full measure of actual revisions, because the Grove
order in the ordered algebra cannot take account of revision by sentences which
do not belong to the local language of this algebra. In order to propose a general
operator for revision, which applies to such cases, it is necessary to have a repre-
sentation of such new information; this is the task to which we now turn.

Often new information with respect to which beliefs are to be revised is
treated as a simple sentence of some fixed language. However, in the frame-
work proposed here, where no use is made of such a fixed language, incoming
information will generally require a local logical structure of its own, which can
be modelled as an interpreted algebra (Section 1.2). However, the interpreted
algebra only models the logical structure in which the incoming information
is couched; it does not specify which sentences in this structure are learnt, or
the extent to which the sentences of the local language are to be accepted. For
example, if the local logical structure pertinent for a case where ¢ is learnt is
modelled as a simple algebra (Example 1), some supplementary structure on
this algebra would be needed to represent the fact that it is ¢ and not —¢ which
is to be accepted. It would seem natural to represent this fact with an order on
the states or small worlds of this algebra which favours (the small world where)
¢ to (that where) —¢. So doing, one obtains an ordered algebra - in fact, one
obtains a simple ordered algebra (Example 3). In this basic case, new informa-
tion can be represented as ordered algebra; the suggestion is that this sort of
representation is appropriate in general.

Indeed, representing new information with ordered algebras inherits the ad-
vantages of ordered algebras which have been emphasised above. As with the
case of belief states, different statuses of the different elements of incoming
information may be captured by ordered algebras. A sentence learnt irrevoca-
bly - accepted without any envisaged possibility of challenging the new infor-
mation - can be represented as a local tautology of the ordered algebra repre-
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senting the incoming information. On the other hand, information learnt in a
context such that it is reliable only under certain conditions - say, the result of
a scientific experiment, which is valid only under certain assumptions relating
to the details of the experiment - would belong to the centre of an ordered alge-
bra which also contains sentences expressing the appropriate conditions. To be
more pedantic, what is learnt is characterised precisely by any sentence which
is true only in the minimal (or most preferred) worlds of the ordered algebra
- that is, by any generator of the ordered algebra (see above). Incoming informa-
tion shall be modelled by an ordered algebra, where the sentence learnt can be
thought of as a generator of the algebra.

Under the current proposal, both the belief state and the new informa-
tion are represented by interpreted algebras with appropriate orders on them
(ordered algebras); the revision operation will somehow combine these alge-
bras. The operation which combines the interpreted algebras has already been
defined and motivated: it is the fusion operation * of Section 1.2. It remains
to specify how to combine the orders on the algebras. There is a selection of
operations which may be employed here, several of which have been discussed
in some form or another in the literature. For the purposes of this paper, where
the general framework is at issue, it would not be appropriate to enter into de-
tailed considerations and debates; it will suffice to pick a natural candidate and
develop a revision operation built on this operation on orders. Although this
candidate, and the revision operation constructed from it, has several interest-
ing, attractive and useful properties, let it be emphasised that other operations
on orders may prove equally useful, and may result, using a similar procedure to
that carried out below, in equally interesting revision operations. The operation
on orders used here is the lexicographic product, x;, which, loosely speaking,
follows the /atter order, unless the two elements are equivalent under this order,
in which case it follows the former order.!® It has the advantage of being non
commutative, which fits well with the idea that new information should have
priority over previous beliefs.

Definition 4 (Fusion * of ordered algebras). Let (By,=<) and (By,<,) be
ordered algebras.'” The fusion (B;,<X,) * (Bg,X,) = (By * By, X| x; <,).

(B4,=) represents the initial belief state: its centre is the set of beliefs.
(By,=,) represents the new information: the sentence learnt is a generator.
(B4.21) * (Bg,=,) represents the resulting belief state: its centre is the new
set of beliefs.

18 Formally, (a, b) < 1% 29 (¢ d)iffeither b <4 d or b=, dand a <, c. The order which has prior-
ity is a question of convention. The latter order is chosen here to simplify the discussion below.
19 Recall that the appropriate identification relation is presupposed.
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2.2 Properties of the model

The operator *, with the interpretation of ordered algebras as representations of
belief states and incoming information, provides a model of belief revision in so
far as it satisfies an appropriate translation of the well-known Géardenfors postu-
lates for belief revision into the proposed framework. Since the representation
of the belief state after revision (ordered algebra) is of the same format as the
representation before revision (and thus appropriate for further revision), it is
automatically an iferated revision operator; furthermore, two important iterated
revision operators proposed in the literature (Segerberg, 1998; Nayak, 1994)
can be recovered in the proposed framework as special cases corresponding to
particular constraints placed on the incoming information. These properties are
expressed by the following two theorems.?®

Familiarity with the Gérdenfors postulates for belief revision is assumed (for
the canonical presentation, see Gérdenfors (1988)). Rather than reproducing
them in all their glory, and to avoid getting bogged down in technical details, the
following informal version of the theorem is stated.

Theorem 1. Let (By,= ) be an non trivial ordered algebra with centre K, let
(Bgy,=y) contain sentences ¢ and i and have generator ¢, and let (Bo,=< 3)
have generator ¢ A . Let K * ¢ (resp. K * (¢ A 1)) be the centre of

(B1,X1) *(Bg,Xy), (resp. (By,X ) * (By,=<3)). Then the Gérdenfors postu-
lates, applied to K, K * ¢ and K * (¢pA ), and using the notions of consequence
in the appropriate interpreted algebras (B, By, By * By), are satisfied.

There are two subtleties in this theorem, with respect to the simple Géarden-
fors formulation of the postulates. On the one hand, where one normally as-
sumes a fixed language and logical consequence relation, there are several in
play here, so it is necessary to specify which one is relevant for each postulate; in
all cases, the theorem holds for the most natural candidate. On the other hand,
whereas the Gardenfors postulates are normally expressed in terms of sentences
and sets of sentences, the basic notion here is that of ordered algebra. This is a
more flexible and general representation of beliefs and new information, which
offers several notions of “belief” or “sentence learnt”, of which only one is per-
tinent to the theorem: namely, the interpretation of beliefs and sentences learnt
as the “most preferred sentence” (centres and generators) of the respective al-
gebras. The postulates do not necessarily apply to the local tautologies of the re-
spective algebra, that is to the “commitments” or “irrevocable sentences”. This
is one concrete sense in which the model of belief revision proposed here recov-

20 Proofs, and indeed rigorous formulations, of these theorems shall not be pre-
sented here; for details, see Hill (2006b).
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ers the traditional theory as an idealisation: the Gardenfors postulates hold, but
only in the special cases where centres and generators (and the corresponding
notions of “belief” or “information”) are being used. One of the desiderata of
a more realistic model of belief dynamics - namely, to exhibit in which sense
previous theories are idealisations - is thus fulfilled.

As noted above, * is an iterated revision operator, in that it yields a structure
(ordered algebra) fit for subsequent revision (using *). Furthermore, two iter-
ated revision operators, called “radical” and “moderate” revision by Rott (2003),
which have been suggested and defended by Segerberg (1998) and Nayak (1994)
respectively, can be recovered by placing conditions on the ordered algebra repre-
senting the incoming information. This is the sense of the following theorem.?!

Theorem 2. Let K be the centre of the ordered algebra (B,X). Then

(Rad)  If ¢ and y are modelled by B¢p et Bwp respectively, the postulate for
radical revision is satisfied.

(Mod) If b and ¢ are modelled by B¢ et Bw respectively, the postulate for mod-
erate revision is satisfied.

This theorem counts as a further illustration of the fruitfulness of this model
of belief revision: iterated revision operations proposed in the literature are ap-
parently recovered as special cases of the form of the input information. In the
sense in which they suppose that the input information takes a particular form,
they are idealisations; in the sense in which the model proposed here does not
make this supposition, and indeed can accommodate a multiplicity of possible
formats for the incoming information, it is more realistic.

One can conclude that the model of belief revision proposed in the sec-
ond part of this paper is more realistic, and indeed seems to open up fruitful
possibilities of development into a full theory of belief revision. The general
framework on which this model rests, and which was presented in the first part
of this paper, has proved promising in the case of belief revision; it would not
be exaggerated to expect similar success when applied to other questions where
belief is involved and realism is an issue.

2l See any of the cited papers for a formulation of the iterated revision postulates.
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Six Ways of Knowing Whether!

Bjorn Jespersen

Introduction

It is shown how to analyse and formalise (possible-world) propositional and hy-
perpropositional empirical attitudes of the form, “a knows whether 4” in their
two de dicto and at least two de re variants. The logic of knowing whether is
developed within Transparent Intensional Logic, whose notion of construction
will explicate the notion of hyperintensionality. (For background and further
details, see Tichy, 1988, 2004.)

Let 4 be an arbitrary object of knowledge. Then knowing whether A is con-
strued as a special case of a general case. The general case is

knowing which disjunct (if any) of AVB is true.

The general case should not be confused with knowing whether A or B (if
any). The difference is the difference between knowing which disjunct is true
and knowing whether their disjunction is true. (Syntactically, the difference is
predicated on whether v includes K in its scope.) The disjunction AvB in the
general case may well be inclusive, for all that is required to know which disjunct
(if any) of AvB is true is knowing of at least one of 4, B that it is true. The only
exception is when B = —4, in which case v needs to be exclusive.

The most important difference between knowing that A and knowing whether
A is that the latter is not factive; knowing whether A is logically compatible with
—A4.2

I A version of this paper (entitled “Russell’s first puzzle”) was read at the conference /00 Years of
‘On Denoting’, Department of Philosophy, University of Genova, 18 December 2005. It coincides
in part with material also appearing in DuZi ef al. (Ms.). I am indebted to Marie Duzi and Gert-Jan
Lokhorst for comments on an earlier draft.

2 Rescher calls it an “epistemic resolution regarding a proposition [4] when the knower [a] knows
whether 4 is true or not: K A v K ,—4” (2005, p. 24). See also Hintikka (1975) and Lewis (1998).
K A v K,—A is not a tautology, for @ may know neither 4 nor —4, and should not be confused with
the classical tautology K aA v =K aA (See Genesereth & Nilsson, 1987, p. 227.) Hart et al. argue that
knowing whether and knowing that are interdefinable, such that a knows that 4 iff 4 and a knows
whether 4 (1996, p. 254). They also point out that knowing whether is ‘invariant under comple-
mentation’; a knows whether A iff @ knows whether —A4. This is due to the non-factivity of knowing
whether, and is symptomatic of its poverty of information.
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Therefore, for instance, the following standard principle of transmission of
knowledge does not hold for knowing whether:

a knows that » knows that A4 is true;
therefore, a knows that 4 is true.

The reason is because the principle would translate into

a knows whether b knows whether A4 is true;
therefore, a knows whether 4 is true.

If @ knows which disjunct of 4 v B is true, it is because any one of the following
four options obtains:

e g knows that 4

e ¢ knows that B

e q knows that 4 and B

e « knows that neither A nor B.

The third option presupposes that B # —4 on pain of rendering knowledge
inconsistent.* The fourth option presupposes that if B = —4 then if 4 is a propo-
sition then it must be a properly partial function; and if 4 is a hyperproposition
then it must yield a properly partial function.

An ascription of knowledge whether does not reveal which of the four options
obtains. Nor need the ascriber know which obtains in order to make a true
ascription. But the ascriber must know that the ascribee knows which it is. For
illustration, imagine that you know that Fermat had a proof of whether his Last
Theorem is indeed a theorem, but do not know which way the proof went. Then
you know that Fermat knew whether the Theorem is a theorem, while you may
not know what Fermat knew. What you do know is that Fermat would have been
the one to turn to for a conclusive answer.

Let George IV know whether Scott is the author of Waverley. Understood
de dicto, George IV knows whether the proposition that Scott is the author
is true, or George IV knows whether the hyperproposition that Scott is the
author yields a true proposition. Understood de re, either George IV knows of
the particular individual who is singled out as the author whether he or she is

3 Consider these two mixed cases: @ knows whether b knows that A4 is true; therefore, a knows that
A. And: a knows that b knows whether 4 is true; therefore, a knows that A. The former is valid; the
latter, invalid.

4 A paraconsistent epistemic logic holds that some instances of Ar—4 may figure as pieces of
knowledge; namely, when it is known that a self-contradiction is true. This is a non-vacuous claim,
since paraconsistent logicians argue that some (though not all) self-contradictions are indeed true.
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Scott, or George IV knows of the particular individual who is singled out as the
author whether he or she is the author. Both variants have their passive forms as
well: The individual who is singled out as the author is such as to be known by
George IV whether to be Scott or whether to be the author. The active variant
is the variant with an anaphoric reference; the passive variant ascribes to the
particular individual the property of being such as to be known by George IV
whether to be Scott or the author.?

The intension|hyperintension (proposition|hyperproposition) distinction con-
cerns, within epistemic logic, whether the piece of knowledge is intensionally or
hyperintensionally individuated. Therefore, A in knowing whether A is ambiguous
between intensions and hyperintensions, and rigorous disambiguation is called
for. By ‘intensional entity’ I mean intension as defined by possible-world seman-
tics, which defines intensions as functions from possible worlds and identifies any
two such logically equivalent functions. ‘Proposition” denotes only possible-world
propositions in this paper. By ‘hyperintensional entity’ I mean entities whose
principle of individuation is finer than logical equivalence (see Cresswell, 1975.)
In popular terms, hyperintensional logic is able to distinguish between a half-full
glass and a half-empty glass. This distinction presupposes the possibility of oper-
ating with two or more different (yet equivalent) modes of presentation or con-
ceptualisations of the same inverse relation. In the case of knowledge, we need to
be able to operate with two or more different (yet equivalent) hyperintensional
‘modes of presentation’ of the same proposition. The relevance to epistemic logic
is that even though a knows, hyperintensionally, that the glass before him is half-
empty, it does not follow that @ knows that the glass is half-full (or vice versa).
The same proposition is conceptualised in two different manners; first, in terms
of the glass being half-empty, then in terms of the glass being half-fi/l. Likewise,
even though b knows, hyperintensionally, that the figure before her is triangular,
it does not follow that b knows that the figure is trilateral (or vice versa).

Logical foundations

In order to define knowing whether in its intensional and hyperintensional (con-
structional) variants within TIL, we define this theory’s concepts of construction
and simple and ramified types. The former types are also known as types of order
1 over an ontological base.

DEFINITION 1 (2ype of order I over ontological base B)
Let B be a collection of pairwise disjoint, non-empty sets. Then

e Each member of B is a type of order I over B.

5 This active/passive distinction is explained in detail in DuZi ef al. (Ms.)
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e Ifa, By.....3, are arbitrary types of order I over B, then the set (af3;...3,)
of all partial functions whose arguments are tuples with elements of the
types B.....B,,, respectively, and whose values are elements of 7ype o is
also a type of order 1 over B.

o Nothing else is a type of order I over B.(1

Remark. An ontological base of ground types must be decided upon before
launching a type-theoretic analysis. For the purposes of the analysis of attitudes,
not only individuals and truth-values but also times and possible worlds are
needed: o (truth-values), 1 (individuals), T (times), ® (possible worlds). T is also
the type of real numbers; hence time is modelled as a continuum.

Remark. The type of an intensional entity is polymorphous, namely (o®), o0 an
arbitrary type. An intensional entity is a (perhaps properly) partial function
from possible worlds to a-objects. The intensional entities occurring in this pa-
per are all of the type ((at)w), abbreviated o : Functions from possible worlds
to functions from times to a-objects. For instance, a proposition is of type o_:
A function from possible worlds to a function from times to truth-values. This is
so in order to model both modal and temporal variability.

DEFINITION 2 (construction)

o (Variable) Let a total valuation function v be given that associates vari-
ables XGs XTees Xy with a sequence Seq of objects Agy Ay vy Ay oo of
type a.. Then the variable x{ v(aluation)-constructs the n'" object a of Seq
relative to v.

o (Trivialization) The construction °X consists in constructing X without the
mediation of other constructions and leaves X unchanged.

o (Double Execution) The construction X v-constructs what is v-constructed
by what is v-constructed by X iff X is a construction that v-constructs a
v-proper construction, a construction being v-proper if it v-constructs an
entity. Otherwise 2X is v-improper in the sense of failing to v-construct
anything.

o (Composition) Let X be a construction that v-constructs a function f, of
type (af...,,), and let X,..., X, be constructions that v-construct the enti-
ties byy,..., b,, respectively, of types B,... B, respectively. Then [XX|,...X, ]
is a construction called Composition. If f is undefined at <b,,..., b,> or if
any of byy,..., b, is not v-constructed, then [XX,...X, ] is v-improper by fail-
ing to construct anything. Otherwise [XX...X, | v-constructs the value of f
at the arguments by,..., b,.

e (Closure) Let x,..., x; be pairwise distinct variables and Y a construc-
tion. Then [A x§,..., x2 Y] is a construction called A-Closure (or simply
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Closure). It v-constructs the following function g. Let v’ be a valuation
identical with v at least up to assigning objects b, to variables x, 1<i <
n. If Yis v-improper, g is undefined on <b0,..., bn>. Otherwise the value
of g on <b,,..., b,> is the object v’-constructed by Y.

e Nothing else is a construction. O

Remark. The following examples may help keep Variable, Trivialisation, and
Double Execution apart. If the 5 slot in Seq is 5 then X5 v-constructs 5. 95 con-
structs 5. °x5 v-constructs, for all valuations v, the variable xs. If X v-constructs
X5 then 2X y-constructs 5. The Trivialization of an entity X is a primitive, non-
perspectival, ‘direct’ construction of X and makes use of no other construc-
tions in constructing X. A rough linguistic counterpart would be the device of
quotation. Just as “quotation” quotes, or mentions, the word ‘quotation’, so °X
quotes, or mentions by constructing, the entity X. If ¢ is a variable ranging over
propositional constructions, then the Double Execution 2c consists in, first, de-
scending from variable to propositional construction and, second, descending
from propositional construction to proposition. That is, 2c is a construction
y-constructing a proposition.

DEFINITION 3 (ramified type hierarchy)

o T, (simple types) Simple types are of order 1.
e C, (construction of order n):
o If xis a variable ranging over a type of order n then x is
a construction of order n.
o If X belongs to a type of order n then °X is a construction of
order n.
o IfX, X,,.., X,, are constructions of order n then [XX,...X,, ] is
a construction of order n.
o If X seeesX s Y are constructions of order n then [lxl...me] is
a construction of order n.
e T, (type of order n+l) Let *, be the set of all constructions of order n.
Then:
o *, and every type of order n are types of order n+I (‘type raising’).
o Ifop,....8,, are types of order n+1 then (ap,...3,,) is also a type
of order n+l.
o Nothing else is a type of order n+1. 01

Remark. The functions Sub” (for ‘substitution’) and 77 (for ‘Trivialization func-
tion’) are indispensable for the logical analysis of attitudes de re. (See Tichy
1988, p. 68 for 7r*, p. 75 for Sub", and Materna 1997, p. 337 for both.) Sub" and
Tr* make bound variables amenable to manipulation by, first, ‘untying’ them
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from the context they are bound in and, second, substituting Trivializations for
them. (Intuitively speaking, a constructional (i.e., hyperintensional) context is
one ‘mentioning’ a construction rather than ‘using’ the construction to obtain
the entity it constructs. Thus there is a methodological, though not substantial,
parallel between the hyperintensional epistemic logics of TIL and sentential-
ism.) In the cases below the relevant bound variables are bound by Trivializa-
tion, like %x or %X, where x occurs at least once in X. Let X, ¥, Z be constructions
of order n, at least Y a variable. Then the function Sub”, of type (*n *n *n *n),
is a mapping which, when applied to <X, Y, Z>, returns the construction that is
the result of correctly substituting X for Y'in Z. Next, let o be a type of order n, o
an object of type a.. Then Ti%, of type (¥, a), is a function which, when applied
to o, returns the Trivialization of o. For instance, if a/1, A/Lm, then [°77* %a]
constructs % (i.e., the Trivialization of the individual a). The Composition
[OT 0Awt] v-constructs the Trivialisation of the individual (if any) v-constructed
by °4,,. The Composition [°Sub [°TF °4, ] % °[...y...]] is v-improper if °A , is
v-improper. Otherwise, if @ is the individual v-constructed by Osz then it v-con-
structs the construction v-equivalent with °[...%...].

To express knowing that neither A nor —A in logical notation, we need to
introduce the propositional property of being undefined (Und).

DEFINITION 4 (Undefined)

Let V/(o(om)); V’/(0(01)); —=/(00); =/(000); P/o
Then

True, False, Und[(0 0,).,

T’

0w [°V°At [°Und,, °P] = [—[°True,,,°P] A —[°False,, °P]]]. O

Knowing whether requires two definitions. In the case of empirical attitudes,
knowing is a relation (-in-intension) either to a proposition or a propositional
construction, while mathematical attitudes are invariably relations to construc-
tions of the truth-value T. Thus,

K/(ovro,,),, (‘to know a proposition’)
K*[(017*)),, (‘to know a (first-order) construction’).

LetQ/o_,:C.D/* ip/*| =0 6 d[*y—>* |, 2c> 0, . d—>0_;=/(00,,0..);
=,[(0™ | *1);1/ (0, (00,,)); 1/ (*,(0*)). ‘x/*, — o’ means that x is a construc-
tion of type *, ranging over the type o.. Terms for truth-functions occur in infix
notation without Trivialization for better readability. Here C, D are propositional
constructions, and ¢, d variables ranging over propositional constructions. We
only define the cases in which °Q =, Awks [-°P, ] and °D =, °[AwAz [-C,,]] to
keep the definitions as economic as possible. The respective general cases may
be readily reconstructed from the definitions.
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DEFINITION 5 (knowing whether P)

a knows whether P iff
AWML [OKwt % [“%p [p,, A Llp = Pl v [p =, AWt [_‘Osz]]]”]- O

Remark. Provided C constructs P, the definiens of DEF. 5 may be equivalently
constructed by

AWAE [OKwt % [“p [p,, A Llp =, Cl Vv I[p=; 2wkt [=C,,I1111].
When it is known whether P is true or false or neither, what is known is this:
DEFINITION 6 (P being true or false or neither)

(%% [p,,, A [P =; °PI v [p =) Awht =[°P, 1] v
[p =, 2wt [°Und, , °P]11]]. O

Remark. The third disjunct, [p = Awkt [°Und,, °P]], can be dispensed with
when P is a total function.

DEFINITION 7 (knowing* whether C)

a knows* whether C iff
AWAL [Osz g [1*hc [[2c]wt Alle=, °CT v [e - O AWt [_‘th]]] v
[e =) *[AwAt [*Und,,, CI111111. O

Philosophical application (I): Mathematical attitude

Mathematical attitudes must be relations to constructions of truth-values and
not also of truth-conditions (propositions), since mathematical truths and false-
hoods are not sensitive to worlds and times. Therefore, sentences ascribing
mathematical attitudes are susceptible to only one reading de dicto and at most
two readings de re, depending on the particular example. For instance, one thing
is to know* of 2 that it is the only even prime; another thing is to know* of the
only even prime that it is 2 (see the following section).

Knowing* whether Fermat’s Last Theorem is true is to know* which of
two constructions constructs T. The analysandum is the sentence (disregarding
tense)

“Fermat knows whether there are positive integers a, b, ¢, n (n>2)
such that a" + b"= ¢".”
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Let v be the type of Pos (positive integers) such that a, b, ¢, n, x/* | — v; Pos/(01);
2/v; ¥, 3[(0(oV)), c[*y — *4, 2c — 0; Fermat/1. We write x™ for ‘[°Exp n x|,
Exp/(vvv) the power function taking x to its n™ power. Then the analysis de
dicto is the Closure

Mkt [°K*, OFermat [“v+)c [[*c] A [¢ =, °[*Fhaben [[°Pos a] A [°Pos b] A
[°Pos c] A [%> n %2] A [°=[%+a” b"] ¢"]]] v

¢ =, °[OVAabcn [[°Pos a] A [°Pos b] A [°Pos c] A [%>n 2] D

—[0= [ a" b"] 111101

The analyses de re are reconstructible from the analyses below.

Philosophical application (II): Empirical attitude

Here follows a six-way disambiguation of
“a knows whether Scott is the author of Waverley.”

Taken together, the disambiguations express knowing whether and knowing*
whether in their two de dicto and all their four de re variants. We need to employ
the fourth option mentioned in the Introduction, since the individual concept
the author of Waverley is a properly partial function.

The propositional and constructional attitudes de re will both have two vari-
ants, as soon as we allow that the ascribed sentence may also be read as, “a
knows whether the author of Waverley is Scott”.6

The disambiguations are the following paraphrases:

o (propositional, de dicto) “a knows whether the proposition that Scott is
the author is true or not”
e (propositional, de re)
(i) “a knows of Scott whether the proposition that he is the au-
thor is true or not”
(ii) “a knows of the author whether the proposition that he/she is
Scott is true or not”
o (constructional, de dicto) “a knows* whether the construction construct-
ing the proposition that Scott is the author constructs a true proposition
or not”

% T owe to Marie DuZi the observation that propositional as well as constructional attitudes de re
are susceptible to disambiguation in terms of knowing whether «a is the F, as opposed to knowing
whether the F'is a.
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e (constructional, de re)

(i) “a knows* of Scott whether the construction constructing the
proposition that he is the author constructs a true proposition
or not”

(ii) “a knows* of the author whether the construction construct-
ing the proposition that he/she is the author constructs a true
proposition or not”.

Let s/1 (Scott); AW]1_, (the individual concept of the author of Waverley);
=/(ow); Sub/(*{*1*1* ), Tr[(*11); ¥/*; — 1. Then:

(propositional, de dicto)

Akt [°K,,, % [%Ap [p,,, A [[p = AwAt [PAW, = %s]] v
[p = Awht —[°AW, = S]] v [p =, dwit [°Und, , hwt [PAW, = °s]1111]]

(propositional, de re)

(i) Awkt [°K,, %a [“Wp [p,, A 2[°Sub s % °[[p =| Awkt [y =AW, ]] v
[p =, Akt —[y = %AW 1] v
[p =, Akt [°Und,,, hwki [y = AW, 11111111

(i) wwht [°K,, %a [“%p [p,, A
2[0Sub [°Tr °AW,,,] %y °[[p = Awit [y = 5]] v
[p=; Awhs =[y = %]]111111

(constructional, de dicto)

Mt [°K* | %a [ ke [[%c],, A [Le =, O[Awike [PAW,, = %s]]] v
[c =, *[AwAt =[°AW,, = %]]] v
[c = *[Awht [°Und,,, Awht [PAW,,, = 51111111

wt

(constructional, de re)

(i) dwht [°K* ), %a [“%he [[%c],,, A
2[°Sub % %y °[[c =, °[Awit [y = "AW, ]1] v
[c =, "[Awht [y =AW, ]]1] v
[c = [Awt [*Und,, Awht [y = “AW, 111111111

(it) At [°K*,, %a [ e [[%c],, A 2[OSub [°TF AW, ] O
e =, °[awr [y = %111 v [c =, °[Awhs =Ly = 11111111
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Epistemic shift

Factivity can be restored to propositional knowledge whether by specifying which
of P, Q (possibly both) is true, and to constructional knowledge whether by speci-
fying which of C, D (possibly both) constructs a true proposition. For example,
let a know* whether Scott is the author of Waverley and let it be true that Scott
is indeed the author of Waverley. Then it can be validly inferred that a knows*
that Scott is the author of Waverley. But then the question arises what the rule
of factivity of knowledge is to look like for constructional knowledge. This is
the problem of what I call epistemic shift. The problem is how to account logi-
cally for the shift from a known* construction to a true proposition or to T. The
problem of epistemic shift arises for any hyperintensional logic within which hy-
perintensional objects of knowledge are not also truth-bearers. (In an epistemic
logic based on possible-world semantics, propositions serve in both capacities.)
The rule for propositional knowledge is obvious:

o 0
[°K,,, "a p]
Dy
The rules for the empirical and mathematical attitudes, respectively, are as fol-
lows. Let c¢/*y, — *|; 2 - 0., Then if ¢ is known* the proposition that is
y-constructed by what is v-constructed by c is true:
0 0
[°K*,,; “a cl
[*cl,,,
Let d/ *2 — *1; 2d — o. Then if d is known* the truth-value v-constructed by
what is v-constructed by d is T:
0 0
[°K*,,, "a d]
2d

Conclusions

e To know whether 4 is to know which disjunct, if any, of (4 or B) is true (in-
clusive disjunction, provided B # —A4)

e A particular case is knowing which disjunct, if any, of (4 or —A4) is true (ex-
clusive disjunction)

e ‘A’ in ‘knowing whether A’ is ambiguous between denoting either a proposi-
tion P or a construction C
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e ‘Knowing’ in ‘knowing whether A’ is ambiguous between denoting a relation-
in-intension between an epistemic agent and either P or C

e “a knows (propositionally) whether P” and “a knows* (constructionally)
whether C” are ambiguous between interpretations de dicto and de re

e Transparent Intensional Logic can provide a principled, non-ad hoc logic to
capture the distinctions between propositional and constructional knowledge
de dicto and de re. The theory can also solve the problem of epistemic shift.

Bjorn Jespersen

Section of Philosophy

Delft University of Technology
The Netherlands
b.t.fjespersen@tbm.tudelft.nl
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Recapturing the Epistemic Dimension
of Logic

John T. Kearns

1. The two dimensions

Historically, the subject matter logic has had both an epistemological, or epis-
temic, and an ontological, or ontic, dimension. From the time of Aristotle until
the mid-nineteenth century, the focus was primarily epistemic. Logic was con-
cerned with arguments, deductions, and proofs. Following the work of Boole
and Frege, logic took an ontic turn. This is perhaps most obvious in the case
of Boole, who showed little interest in deductive derivations. Frege, in contrast,
did have epistemic concerns. He developed the modern style of deductive sys-
tem, and regarded his deductions as models of rigor, in which fallacious appeals
to intuition would have no place. But Frege was concerned to reason carefully
and correctly, not to study reasoning. For Frege, logic is no more a study of
knowledge and how we get it than physics is a study of these things.

Perhaps Frege’s conception of logic was influenced by his aversion to the
psychologism that he saw in Kant’s account of mathematics, especially arithme-
tic. In order to defend the universality of mathematics, or, anyway, arithmetic,
and show that its truths would hold in any world whatever, Frege took up the
project of showing that arithmetic belongs to a logic whose truths have this
character. The project of logic as he understood it was to develop a perspicu-
ous language for describing reality, a language in which grammatical categories
reflect ontological ones, and to establish logical laws that have the form of state-
ments about reality.

The ontological dimension of logic is a legitimate object of logical investiga-
tion. It was an important advance when logic was reconceived to incorporate
ontology. But this advance need not, and should not, lead us to abandon the
epistemic dimension of logic. Illocutionary logic provides the resources to ac-
commodate both the ontic and the epistemic dimensions of logic, and I want to
extol some of the virtues of illocutionary logic.
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2. The logic of speech acts

Illocutionary logic as a distinct subject matter was invented, and pioneered, by
John Searle and Daniel Vanderveken. However, their understanding of the field
is somewhat different from my own, and there is not much overlap between the
topics they investigate and the results that I have obtained. I will explain illocu-
tionary logic from my own perspective.

Illocutionary logic is the logic of speech acts, or language acts. These are
meaningful acts performed with expressions. There are a great variety of lan-
guage acts. I shall focus on sentential acts, which are performed with an entire
sentence. Some sentential acts are true or false, and I call these statements. This
is a special, stipulated use for the word ‘statement,” because the word is often
used as a near synonym for ‘assertion.” On my conception, language acts are the
primary bearers of such semantic features as meaning and truth; expressions
have syntactic features and can be regarded as syntactic objects.

Some sentential acts are performed with a certain illocutionary force, and
constitute illocutionary acts. Examples are promises, warnings, assertions, dec-
larations, and requests. Statements themselves can be used to perform a variety
of illocutionary acts.

We now understand a logical theory to have three components: (1) a special-
ized or formal language, (2) a semantic account for this language, and (3) a de-
ductive system for codifying some logically distinguished items in the language.
A system of illocutionary logic is obtained from a standard system by making
three changes:

(i) Illocutionary-force indicating expressions, illocutionary operators, are add-
ed to the formal language.

(ii) The semantic account of truth-conditions is supplemented with an ac-
count of the rational commitments generated by performing illocutionary
acts. Asserting this or denying that will commit a person to make further
assertions and denials.

(iii) The deductive system is modified to accommodate illocutionary opera-
tors.

3. A simple system

I will illustrate a simple system of propositional illocutionary logic. The lan-
guage L contains atomic sentences and compound sentences obtained from
them by using these connectives: ~, v, &. (The horseshoe is a defined symbol.)
The atomic and compound sentences are plain sentences of L. The plain sen-
tences represent natural-language statements.
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The illocutionary operators are the following:

F - the sign of assertion — - the sign of denial
= - the sign of supposing true - - the sign of supposing false

A plain sentence prefixed with an illocutionary operator is a completed sentence
of L; there are no other completed sentences. Completed sentences represent
illocutionary acts.

The language L contains two kinds of logical operators. The logical opera-
tors in plain sentences are the connectives, which represent things we actually
say in making statements. These things we say belong to the statements that we
make. But the illocutionary operators don’t represent things we say. They repre-
sent things we do with statements. We may sometimes use expressions to make
explicit just what we are doing with a statement, as when we say “suppose.” But
we generally don’t say “I assert” in making an assertion, and we often don’t say
“suppose” when we are supposing something.

An assertion is understood to be an act of producing and coming to ac-
cept a statement as representing what is the case, or an act of producing and
reaffirming one’s (continued) acceptance of statement. (An assertion in this
sense doesn’t need an audience, and all such assertions are sincere.) A denial
is an act of coming to reject a statement (for being false), or an act reflecting
one’s rejection of the statement. Supposing a statement A4 to be true or false is
not a subjunctive or counterfactual consideration of how things would be if A
were true. Instead we consider how things are, if in addition to what we know
or believe, 4 is also true. Once made, a supposition remains in force until it is
discharged (canceled) or simply abandoned. An argument which begins with
assertions and denials can reach a conclusion which is an assertion or denial.
But we cannot correctly begin with at least one supposition, and conclude with
an assertion or denial. The conclusion must have the force of a supposition, and
will be called a supposition.

The semantic account for the language L has two tiers, or levels. The first
tier presents the ontology encoded by the language, giving truth conditions of
plain sentences and the statements that these represent. An interpreting func-
tion assigns truth and falsity to the atomic plain sentences, and determines a
truth-value valuation of all the plain sentences.

The second tier of the semantic account is epistemic, and deals with rational
commitment. This is a commitment to perform or not perform some act, or to
continue in some state or condition like that of accepting a statement. Com-
mitments generated by performing acts of assertion, denial, or supposition are
conditional rather than absolute. A person who accepts a statement will be
committed to accept (or to reaffirm her continued acceptance of) some further
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statement, but only if the matter comes up and she chooses to think about it,
and only so long as she continues to accept the first statement.

The second semantic level depends on the first, for the language user must
understand the truth conditions of the statements she asserts, denies, or suppos-
es. Since a commitment to perform or not perform an act is always someone’s
commitment, we develop the commitment semantics for an idealized person,
the designated subject. We consider the designated subject at some particular
moment. There are certain statements which she has thought about and ac-
cepted, which she remembers and continues to accept. There are similar state-
ments that she has considered and rejected. These explicit beliefs and disbeliefs
commit her to accept further statements and to reject further statements. We
use ‘+° for the value of assertions and denials that she is committed, at that mo-
ment, to perform.

A commitment valuation assigns this value to some of the assertions and
denials in L. A commitment valuation V is based on an interpreting function
fif, and only if (from now on: iff) (i) If V(=A4) = +, then f{A) =T, and (ii) If
V(HA) = +, then f{A) = F. A commitment valuation is coherent iff it is based on
an interpreting function.

A coherent commitment valuation V), can be understood to register the des-
ignated subject’s explicit beliefs and disbeliefs at a given time. The commitment
valuation determined by V,, is the function V' such that (i) V(+-4) = +iff 4 is true
for every interpreting function on which V), is based, and (ii) V(H4) = +iff 4
is false for every interpreting function on which V), is based. V indicates the as-
sertions and denials which the designated subject is committed to perform by
her explicit beliefs and disbeliefs. An acceptable commitment valuation is one
determined by a coherent commitment valuation. Acceptable valuations have
these matrices (the letter ‘b’ stands for blank - for those positions in which no
value is assigned):

A =B HA B =~A —~4 +H[A&B] —H[A&B] —[AvB] -H[4vB]

+ + b b b + + b + b
+ b b b b + b b + b
+ b b + b + b + + b
b b b b b b b b
b b b b b b +b +b b
b b b b b b + b b
b b b b b
b b b b b b
b b b b b

The first row shows the commitments of accepting/asserting both A4, B, the
second shows the commitments of accepting 4 and neither accepting nor reject-
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ing B. Etc. In some cases, the values (or non-values) of assertions and denials of
simple sentences are not sufficient to determine the values of assertions and de-
nials of compound sentences. For example, if 44 and —B have no value, and 4,
Bare irrelevant to one another, then ‘—/4 & B/ should have no value. But if HA,
—~A have no value, the completed sentence ‘—/4 & ~A[ will have value +.

4. Semantic concepts

The language L and the two tiers of the semantic account for L provide the con-
ceptual resources to understand, explain, and explore many logic-related phenom-
ena. For example, it is common to attempt to distinguish inductive from deduc-
tive arguments by considerations relating to truth and probability. But these are
first-tier concepts. To properly distinguish deductive from inductive arguments,
we must employ second-tier concepts. What characterizes deductive arguments,
or correct deductive arguments, is that they are based on rational commitment.
In contrast, performing the premiss acts of an inductively satisfactory argument
won’t commit the arguer to performing the conclusion act, the premiss acts only
authorize him, to a greater or lesser degree, to perform the conclusion act.

The truth conditions of a statement determine what the world must be like
for the statement to be true. In standard logic, many concepts are defined in
terms of truth conditions. For example, a set X of plain sentences of L (truth-
conditionally) implies a plain sentence A iff there is no interpreting function of L
for which every sentence in X has value T, while A4 has value F.

An illocutionary counterpart of implication links completed sentences of
L and the illocutionary acts that these represent. Instead of speaking of illo-
cutionary implying, 1 prefer to speak of logical requiring. In order to define this
concept, some preliminary definitions are required.

Let V, be a coherent commitment valuation of L, let V' be the commitment
valuation determined by ¥, and let 4 be a completed sentence of L that is either
an assertion or denial. Then V), satisfies A iff V(4) = +.

Suppositions are not assigned values by commitment valuations. But sup-
posing certain statements will commit a person to supposing others. In suppos-
ing a statement either true or false, we consider truth values to determine what
further statements we are committed to suppose.

Let f'be an interpreting function of L, and let 4, B be plain sentences of L.
Then (i) f satisfies —A iff fld) =T, and (ii) f satisfies ~B iff f{B) = F.

Let f'be an interpreting function of L and V' be a commitment valuation of L
based on f. Then <f, V'>1is a coherent pair for L.

Let </ V> be a coherent pair (for L), and let A be a completed sentence
of L. Then <f, V"> satisfies A iff either (i) 4 is an assertion or denial and V satis-
fies A, or (ii) 4 is a supposition and fsatisfies A.

Let X be a set of completed sentences of L and let A be a completed sentence
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of L. Then X logically requires A iff (i) A is an assertion or denial and there is no
coherent commitment valuation which satisfies the assertions and denials in X
but does not satisfy A4, or (ii) 4 is a supposition and there is no coherent pair for
L which satisfies every sentence in X, but fails to satisfy 4. If a set X of completed
sentences logically requires a further completed sentence, then anyone perform-
ing the acts represented by the sentences in the set is committed to perform the
act represented by the further sentence.

It is necessary to have two clauses in the definitions of illocutionary implica-
tion, because if 4 is an assertion or denial, its value is independent of the values
assigned to suppositions. For example, consider these completed sentences:

" A A B +[B&A]

There is no coherent pair which satisfies —4, 74, —B and fails to satisfy
‘[/B & A], because there is no coherent pair which satisfies —4, 74, —B. How-
ever, the first three sentences do not logically require ‘+/B & A/, for supposi-
tions make no “demands” on assertions and denials. Incoherent suppositions
logically require that we suppose true and suppose false every plain sentence,
but they do not require that we assert or deny anything.

5. Reasoning

The natural deduction system S uses tree proofs. Steps in a proof are completed
sentences, and the rules take account of both truth conditions and illocutionary
force. An initial step in a tree proof is an assertion, a denial, a positive supposi-
tion, or a negative supposition. An initial assertion or denial is not a hypothesis
of the proof. Instead, an initial assertion or denial should express knowledge or
justified (dis)belief of the arguer. Not every asserted sentence is eligible to be
an initial assertion in a proof constructed by a given person. In contrast, any
supposition can be an initial supposition. Initial suppositions are hypotheses of
the proof.
The rules of inference for conjunction are elementary:

& Introduction & Elimination
H/-A —/-B —/-[A & B] —/-[A & B]
H/-[A & B] H/-A ~/-B

The expression ‘+/-’ indicates that the illustration holds both for assertions
and positive suppositions. For each rule, the conclusion is an assertion only if
all premisses are assertions. If at least one premiss is a supposition, then the
conclusion must be a supposition.
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The following arguments are incorrect:

A B A -B
H[A & B] H[A & B]

even though they are truth-preserving, for a supposition as premiss will not sup-
port a conclusion which is an assertion. These arguments are correct:

A B FA B LA B
H[A & B] _[A & B] _[A & B]

Elementary rules move directly from assertions, denials, or suppositions as
premisses to an assertion, denial, or supposition as conclusion. Non-elementary
rules include at least one premiss which is a subproof, and cancel, or discharge,
a hypothesis of the subproof. The rule > Introduction is a non-elementary rule:

{-A}
_B
+/-/A > B]

The premiss of this rule is an entire subproof with ‘-4’ as a hypothesis, and
‘B’ as conclusion. Following a use of this rule, the hypothesis ‘-4’ is canceled.
The conclusion is an assertion if the subproof contains only one uncanceled
hypothesis, ‘-A.” If the subproof contains additional hypotheses, the conclusion
is a (positive) supposition.

Given sentences 4, B, the following is an example of a simple argument in
the deductive system S:

X
A -B I
—[A & B] &E

LD I cancel ‘“B’

/B> A]

An ‘X’ is placed above canceled hypotheses. This argument shows that the prem-

iss ‘=A’ logically requires the conclusion ‘—/B > A/.

Since illocutionary logic is concerned with epistemology, and correct argu-
ments, as well as being concerned with ontology and logical laws, it is important
that arguments in the deductive system be perspicuous, and that the difference
between direct and indirect arguments be clearly indicated. From the perspec-
tive of illocutionary logic, arguments and proofs are not simply instruments
for establishing various results; they are also objects to be studied. The tree
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proofs and the illocutionary operators play an important role in achieving this
goal.

6. Conditional assertions

A theory, or system, of illocutionary logic has an empirical character. It is in-
tended to represent, to capture, our actual practice in using language. It is true
that when it comes to reasoning, and arguments, we are concerned with how
people should reason rather than with how people in fact reason. But the prac-
tice of using language is normative in the sense that there are norms for correct
speaking, and for constructing correct arguments. These norms are implicit in
the practice, in spite of the fact that people often speak and reason in ways
that violate the norms. Systems of illocutionary logic are intended to illuminate
and explain our practice in using language, and must be judged on the basis of
whether they do fit this practice.

By recognizing that conditional assertions are a distinctive form of illo-
cutionary act, a form intended to establish a commitment from accepting or
supposing true the antecedent to accepting or supposing true the consequent,
illocutionary logic is able to provide an intuitively satisfactory treatment of con-
ditional assertions. This account is part of a larger account of conditional illo-
cutionary acts of various kinds, like conditional promises, conditional warnings,
conditional requests, and many more. Standard accounts of conditionals cannot
accommodate these other kinds of conditional acts. I described the illocution-
ary account of conditional assertions at Logica 2003, and a longer account is
soon to appear in Linguistics and Philosophy.

7. Semantic modalities

Distinctive concepts of necessity and possibility are associated with each se-
mantic level of an illocutionary logical theory. A statement is ontically necessary
if its truth conditions cannot fail to be satisfied. Ontic necessity is analytic truth.
Whether a statement is ontically necessary, or analytic, depends on what might
be called the “total meaning” of the statement. A statement is ontically possible
if it is not contradictory. An illocutionary logical version of the modal system S5
is the appropriate system for exploring analytic truth and logical truth.
Epistemic necessity is relative to a person, or a community, and that person’s
or that community’s knowledge at a given time. It is most convenient to develop
an illocutionary system of epistemic modal logic from the perspective of the
designated subject. A statement is epistemically necessary at a given time if its
assertion follows, in the sense of commitment, from the designated subject’s
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knowledge at that time. And a statement is epistemically possible at a time if it is
not ruled out by the designated subject’s knowledge at that time.

Illocutionary logic provides the most convenient, and intuitive, framework
for developing epistemic modal logic. If we consider a context in which asser-
tions have the force of knowledge claims, it is clear that these inference prin-
ciples are correct.

O Introduction O Elimination
FA —COA
FOA FA

For positive supposition, we also have a principle Elimination:

~0A
cA

Someone who asserts a statement with the force of a knowledge claim is com-
mitted to claiming that the statement follows from what she knows. And if she
claims that a statement follows from what she knows, then she is clearly com-
mitted to assert that statement itself with the force of a knowledge claim. Simi-
larly, to suppose that statement 4 follows from current knowledge is to suppose
that 4 is true. But to suppose that A4 is true is not to suppose that 4 follows from
current knowledge. Instead of (1 Introduction, we need these principles for sup-
position:

(T) (54)
/04 /004> B] LU
L[1B [T1A

I spoke about this at Logica 2005, when I talked about the logical difference
between knowledge and justified belief. The illocutionary version of epistemic
modal logic provides an explanation which dissolves the puzzle in Moore’s para-
dox, and explains what is going on in the surprise execution puzzle or paradox.
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8. Referring

The topic of referring has been important in logic, at least since the work of
Frege and Russell, although neither Frege nor Russell used the word ‘refer’ as
a technical term for a type of speech act. However, both men were concerned
with our use of language to “get at” things in the world. In “On Sense and Refer-
ence,” Frege claims that the senses of proper names and definite descriptions
provide modes of access to their referents, while Russell believed that it is the
expressions he called logically proper names that directly connect our statements
with objects of our acquaintance.

There are various puzzles associated with singular terms and statements
made with them. Perhaps the original puzzle is that noted by Frege, who wanted
to understand why some identity statements seem trivial, while others are infor-
mative; even though all true identity statements simply say that a thing is itself.
Another puzzle is to explain how a descriptive singular term can sometimes be
used to identify an object which doesn’t satisfy the description (as one might
use ‘the man with a martini’ for a person who isn’t drinking a martini). Or what
is the difference between expressions which provide the direct access to an ob-
ject which has been characterized as rigid designation, and expressions which
designate non-rigidly?

Various theories have been proposed to explain the workings of names, defi-
nite descriptions, demonstratives, indexicals, and other singular terms. Some
of these theories have been extended to cover common nouns and adjectives.
Logical theories of great complexity have been devised to explain a practice that
doesn’t seem to ordinary language users to be either mysterious or especially
complicated.

No entirely successful or satisfactory account has been provided which ex-
plains the uses of singular terms. Certainly no logical theory provides much
insight. This is partly due to the standard understanding of logic, which fails
to adequately accommodate both the ontic and epistemic dimensions of logic.
Most singular terms have at least two distinct uses, the referring use and the
predicative use. For some singular terms, the referring use is primary, and there
are singular terms which are used only to refer. In a logical theory, the predica-
tive use of singular terms is best understood, and explicated, at the ontic level of
logical theory. The referring use of a singular term is epistemic. Each person in
referring exploits features which are peculiar to herself. Although different peo-
ple can assert the same statement, they can’t make the same assertion. Jones’
assertion commits Jones but not Smith, while Smith’s assertion plays a similar
role for Smith. And when Jones refers to someone, say Napoleon, he exploits
a connection linking him to Napoleon in directing his attention to Napoleon.
Smith can also refer to Napoleon, but his connection to Napoleon is different
from Jones’.
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In a first-order illocutionary theory, the semantic difference between pred-
icative and referring uses of a singular term should be marked syntactically,
even though this is not done in English. I mark the distinction by underlining
individual constants used to refer, and use plain individual constants to repre-
sent their predicative use. A constant can be used predicatively to say that an
individual satisfies criteria associated with the constant, or, if the constant is a
proper name, that the individual is called by that name. A constant can be used
predicatively to talk about whatever individual (uniquely) satisfies the criteria
or is called by that name.

A person who performs a referring act uses a singular term to direct her at-
tention to a particular object. In doing this, she exploits a connection (a mode of
access) that she knows about linking her to that object. This connection might be
based on her own experience of the object, or be derivative from the connections
of other people who have informed her of the object. There are still other sources
of these connections. Since the connections may not be supplied as a matter of
language, we can explain how a person might use a singular term like ‘the man
drinking a martini’ to refer to something other than a man drinking a martini.

A system of first-order illocutionary logic includes a domain of modes of
access as well as a domain of individuals. An interpreting function for the lan-
guage assigns individuals to some or all individual constants, while a commit-
ment valuation assigns modes of access to some or all individual constants.
The modes of access are construed as functions yielding individuals as values.
I haven’t the time or the space here to develop the formal details of a suitable
logical treatment of our use of singular terms. All that I want to note in this
place is that an adequate account of referring expressions and referring acts
belongs to the epistemic level of logic, not the ontic level. Once logic is enlarged
to accommodate the epistemic, it is a relatively straightforward task to devise a
simple and intuitive account that accommodates both referring and non-refer-
ring uses of singular terms.

9. Summing up

Logic is a very old academic subject, and field of research. But there are many
new topics and new areas for logical research. Illocutionary logic, the logic of
speech acts or language acts, is one of these. Illocutionary logic accommodates,
or incorporates, standard logic, and provides the resources to integrate logic’s
traditional concern with epistemology into modern logical theory. This more
adequate conception of logic provides a perspective which allows us to solve
or dissolve certain long-standing problems, and to carry out research which
illuminates our linguistic and cognitive practices. I hope I can encourage other
students and scholars to investigate this relatively unexplored area of logic.
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On Circular Acceptance*

Katarzyna Kijania-Placek

1. Introduction

This paper is a part of a larger project,' in which I attempt to give a logical
analysis of the consensus criterion of truth, i.e. the criterion according to which
a given sentence is true when it is universally accepted by the members of some
group. In this analysis, universal agreement is treated as a special case of major-
ity agreement, and the criterion is stated as follows

A given sentence, p, is true when it is accepted by the majority of some
group, B.

In my previous work I assumed that the expression “person x accepts sen-
tence p”, where p is atomic, is basic and have not analyzed it. This means that
I excluded from the scope of investigation all issues having to do with what
inclines people to accept particular atomic sentences, and in particular what
criteria they use and whether they use any criteria at all. I also left out of con-
sideration the issue of the rationality of decisions regarding the acceptance or
rejection of atomic sentences. My intention now is to remain neutral in these
respects. There is, however, one aspect of these considerations, which I would
like to focus upon, since its character is purely logical and, if left dubious, might
undermine the whole project.

2. Majority agreement applied to the case of atomic sentences

The issue concerns the use of the majority criterion itself in deciding about the
acceptance of atomic sentences. We might wonder whether in the case when
all members of a group base their decisions entirely on decisions made by other
members, the whole process does not become logically corrupt due to the cir-
cularity of this case. What I will try to show below is that even if we take the

* The research for this paper was supported by the Foundation for Polish Science. Thanks to Anil
Gupta and Nuel Belnap as well as the participants of Logica 2006 for comments and suggestions.
! See Kijania-Placek (2000).
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most extreme case, in which the acceptance of an atomic sentence by a person
is, for each person, defined in terms of the acceptance of the sentence by the
other members of a group, this does not by itself lead to logical inconsistencies.
In my work I will rely on the theory of circular definitions developed by Anil
Gupta and Nuel Belnap.

First, let me define such a concept of acceptance, to expose its circularity.
Leta, b, c,d, e and a, ..., a, refer to the members of a group B. We are dealing
with finite groups only. Assume additionally that a;'s decision is defined in terms
of the decisions of all the other members of the group. Otherwise, the authority
of some members might save us from the circularity and the problem does not
arise. We will consider the more reasonable case, in which the person whose
acceptance we are checking is not explicitly taking his or her own decision into
consideration when counting the majority of the group. This decision is not only
more reasonable but logically relevant. The other case, in which a simple majori-
ty of the whole group matters, does not lead to a circular definition. The majority
is then an objective characteristic of the group and does not vary with different
member’s opinions being taken into account. Let Ap(ai) be an abbreviation for
the expression ,,the sentence p is accepted by person a;”, with @, ranging over the
members of a particular group. We can define circular agreement by:

@)) Ap(al.) =4 Most members of the group B; accept sentence p,

where B; stands for the members of the group B except for a;. Stated as it is, the
definition is not explicitly circular. However, since a, is a member of the group
as well, and since all other members base their acceptance on that of other
members, the majority depends, in some cases, on whether a; him/herself ac-
cepts the sentence or not. This makes the definition circular. I will not show the
circularity of the definition in the general case but proceed to examples, since
in order to show that a concept is circular it is sufficient to show its circularity
for a particular situation.

2.1. Example

Consider a group of close friends, a, b, c and d standing for Arthur, Betty, Chris and
Daniel, who value only the opinions of the other members of this closed group as
far as fashion, partying, music, etc. are concerned. And they are pretty conformist
- they follow the majority. Let p stand for the sentence ,,The graduation party is
worth attending“. For our group, whether the party is worth attending depends on
what other members of the group think about it; in fact, if most members of the
group think it worth attending, this makes it worth attending. From (1) we can
infer partial definitions of their respective acceptance of sentence p:
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A,(@) =g (A,(0) AA) v (A (D) AALD) v (A,(0) A A ()
A (6) =g (A (@) AA() v (A, (@) AALD) v (A, () A A ()
A(0) =g (A, (@) AAD)) v (A (@) A A(d)) v (A,(5) A A,(d)
A ) = (A(a) AAD)) v (A,(@) AALO) v (A, (B) AA(c))

Even though Arthur’s acceptance of p is not explicitly defined in terms of his
own acceptance, but in terms of the acceptance of his friends, their acceptance
is defined in terms of his acceptance, which makes the definition circular.

Such circular definitions were believed to be formally inadequate, as they do
not provide definite extensions to the defined concepts and lead to contradic-
tory conclusions in certain circumstances. But the work of Anil Gupta and Nuel
Belnap shows that we can accept circular definitions and work with them. Al-
though circular definitions do not provide extensions for the concepts defined,
we can make semantic sense of them without risking a contradiction. I will
briefly introduce Gupta and Belnap’s theory of circular definitions, or rather
those parts of it that are relevant to our simple case.

3. Circular definitions

Consider an example given by Gupta in ,,On circular concepts®
(*)  F(x) =4 (x = Socrates v (x = Plato A ~F(x)))

This definition is circular, as it contains the definiendum, F, in its definiens.
Thus, no classical extension can be consistently assigned to it. Nothing categori-
cal can be said about Plato. That does not mean, however, that the definition
is useless. We can consistently assign hypothetical extensions to F: assuming a
hypothesis about the extension of F, for example the hypothesis that the exten-
sion is empty, we can conclude on the basis of the definition that its extension
should instead be {Socrates, Plato}. This being our new and better hypothesis,
we can revise it again on the basis of the definition and obtain another, still
better hypothesis. This basic intuition is the source of the concept of a rule of
revision, which is a rule for moving from one hypothesis to another. Definition
(*) generates the following rule of revision d:

input output
(antecedent hypothesis) (consequent hypothesis)
%) {Socrates, Plato}

{Socrates} {Socrates, Plato}
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{Plato} {Socrates}
{Socrates, Plato} {Socrates}
{Arystotle} {Socrates, Plato}

{Arystotle, Plato} {Socrates}

In general, a rule of revision & for a circular definition D:

D) G(x) =4 9(x, G)

is an operation on the powerset of the domain such that for all objects ¢ in the
domain and every hypothesis /# about the extension of G, d € d(h) iff d satis-
fies ¢(x, G) assuming that / is the extension of G. The rule of revision takes an
antecedent hypothesis about the extension of a concept and yields an improved
consequent hypothesis about the extension. Taking all possible extensions as
initial hypotheses, we obtain by the rule of revision infinite revision sequences.
All such sequences form a revision process for the rule. A central thesis of the
theory of circular definitions developed by Gupta and Belnap is that the mean-
ing of a circular concept yields this rule of revision, instead of a way of demar-
cating objects into those that fall under the concept and those that do not.

Even though the revision process has a hypothetical character, we can
sometimes make categorical judgments on its basis. Some of the hypotheses may
turn out to be reflexive, i.e. the repeated application of the revision rule to the
hypothesis results in the original hypothesis.? There are two reflexive hypothe-
ses: {Socrates} and {Socrates, Plato} for definition (*), because 8*({Socrates})
= {Socrates} and 8*({Socrates, Plato}) = {Socrates, Plato}. These reflexive hy-
potheses are those which occur again and again in the revision process; others
do not survive the process of improving the hypothesis about the extension of
the concept. If a claim holds under all reflexive hypotheses, it can be said to
be true categorically; if it holds under none of them, it is false categorically.
Thus, we can conclude from the revision process based on (*) that Socrates is
categorically F and that everything other than Socrates or Plato is categorically
not F. We cannot conclude anything categorical about Plato.

2 There is a natural number 7, such that 8" (h) = 4, where 8" (/) is the result of n applications of &
to h. See Gupta (2000), p. 125.
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4. Finite circular definitions

These concepts of categoricity, although not satisfactory for the general theory
of definitions,® work well for finite definitions. Gupta defined finite definitions
only for first order languages,* but we can directly generalize his definition to
all languages

Definition (1). A definition D in a language L is finite in L iff, for all interpreta-
tions of the non-logical symbols of the language L other than those defined by
D, there is a natural number # such that for all hypotheses / about the exten-
sion of the defined concept, 8"(/) is reflexive.

By mimicking Gupta’s argument of (2000, p. 126) we can show that defini-
tion (1) is finite.’ The concept 4 » (accepting sentence p) defined by (1) is always
relativised to a group of people, B. The groups are finite and as a result there
are finitely many hypotheses about the extension of the concept Ap. For every
interpretation of B the